NOAA. Atlantic Hurricane Season, accessed: twenty fifth May 2021. Available at: https://www.nhc.noaa.gov/data/tcr/index.php?season=2020&basin=atl (2020).
NOAA National Centers for Environmental Information (NCEI). U.S. Billion-Dollar Weather and Climate Disasters, accessed: third Aug 2021. Available at: https://www.ncdc.noaa.gov/billions/.
IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [eds Stocker, T. F. et al.]. (Cambridge University Press, 2013).
Knutson, T., Kossin, J. P., Mears, C., Perlwitz, J. & Wehner, M. F. Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds Wuebbles, D. J. et al.) 114–132 (U.S. Global Change Research Program, 2017).
Camargo, S. J. et al. Characteristics of mannequin tropical cyclone climatology and the large-scale atmosphere. J. Clim. 33, 4463–4487 (2020).
Google Scholar
Knutson, T. et al. Tropical cyclones and climate change evaluation: Part I: Detection and attribution. Bull. Am. Meteorological Soc. 100, 1987–2007 (2019).
Google Scholar
Kossin, J. P., Knapp, Okay. R., Olander, T. L. & Velden, C. S. Global enhance in main tropical cyclone exceedance chance over the previous 4 a long time. Proc. Natl Acad. Sci. 117, 11975–11980 (2020).
Google Scholar
Patricola, C. M. & Wehner, M. F. Anthropogenic influences on main tropical cyclone occasions. Nature 563, 339–346 (2018).
Google Scholar
Wang, S. S., Zhao, L., Yoon, J. H., Klotzbach, P. & Gillies, R. R. Quantitative attribution of climate results on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 13, 054014 (2018).
Google Scholar
Reed, Okay. A., Stansfield, A. M., Wehner, M. F. & Zarzycki, C. M. Forecasted attribution of the human affect on Hurricane Florence. Sci. Adv. 6, eaaw9253 (2020).
Google Scholar
Reed, Okay., Wehner, M. F., Stansfield, A. M. & Zarzycki, C. M. Anthropogenic affect on hurricane Dorian’s extreme rainfall. Bull. Am. Meteorological Soc. 102, S9–S15 (2021).
Google Scholar
Pritchard, H. D. & Turner, J. State of the Global Climate in 2020. 56 pp., WMO-No. 1264 (World Meteorological Organization, 2021).
Gray, W. M. Hurricanes: Their Formation, Structure and Likely Role within the Tropical Circulation. Meteorology over the Tropical Oceans. 155–218 (Royal Meteorological Society, James Glaisher House, 1979).
Camargo, S. J., Tippett, M. Okay., Sobel, A. H., Vecchi, G. A. & Zhao, M. Testing the efficiency of tropical cyclone genesis indices in future climates utilizing the HiRAM mannequin. J. Clim. 27, 9171–9196 (2014).
Google Scholar
Wehner, M. F., Zarzycki, C. M. & Patricola, C. Estimating the human affect on tropical cyclone depth because the climate modifications. Hurric. Clim. Change, (Springer, 2019) 4, 235–260 (2019).
Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate‐change eventualities for regional climate fashions. Geophys. Res. Lett. 23, 669–672 (1996).
Google Scholar
Kay, J. E. et al. The Community Earth System Model (CESM) giant ensemble challenge: a group useful resource for finding out climate change within the presence of inside climate variability. Bull. Am. Meteorological Soc. 96, 1333–1349 (2015).
Google Scholar
Zarzycki, C. M. & Jablonowski, C. Experimental tropical cyclone forecasts utilizing a variable-resolution world mannequin. Monthly Weather Rev. 143, 4012–4037 (2015).
Google Scholar
Knutson, T. et al. Tropical cyclones and climate change evaluation: Part II: Projected response to anthropogenic warming. Bull. Am. Meteorological Soc. 101, E303–E322. 20 (2020).
Google Scholar
Guzman, O. & Jiang, H. Global enhance in tropical cyclone rain price. Nature Communications, 12, 5344 (2021).
Neale, R. B. et al. Description of the NCAR group ambiance mannequin (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR 1, 1–12 (2010).
Zarzycki, C. M. et al. Aquaplanet experiments utilizing CAM’s variable-resolution dynamical core. J. Clim. 27, 5481–5503 (2014).
Google Scholar
Wehner, M. F. et al. The impact of horizontal decision on simulation high quality within the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 6, 980–997 (2014).
Google Scholar
Zarzycki, C. M. & Jablonowski, C. A multidecadal simulation of Atlantic tropical cyclones utilizing a variable-resolution world atmospheric common circulation mannequin. J. Adv. Model. Earth Syst. 6, 805–828 (2014).
Google Scholar
Stansfield, A. M., Reed, Okay. A., Zarzycki, C. M., Ullrich, P. A. & Chavas, D. R. Assessing tropical cyclones’ contribution to precipitation over the japanese u.s.a. and sensitivity to the variable-resolution area extent. J. Hydrometeor. 21, 1425–1445 (2020).
Google Scholar
Ullrich, P. A. & Zarzycki, C. M. TempestExtremes: a framework for scale-insensitive pointwise characteristic monitoring on unstructured grids. Geoscientific Model Dev. 10, 1069–1090 (2017).
Google Scholar
Ullrich, P. A. et al. TempestExtremes v2.1: a group framework for characteristic detection, monitoring and evaluation in giant datasets. Geoscientific Model Dev. 14, 5023–5048 (2021).
Google Scholar