Godfray, H. C. J. et al. Food safety: the problem of feeding 9 billion folks. Science 327, 812–818 (2010).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Godfray, H. C. J. et al. Meat consumption, well being, and the surroundings. Science 361, eaam5324 (2018).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on wholesome diets from sustainable meals programs. Lancet 393, 447–492 (2019).
Google Scholar
Springmann, M. et al. Health and dietary elements of sustainable diet methods and their affiliation with environmental impacts: a international modelling evaluation with country-level element. Lancet Planet. Health 2, e451–e461 (2018).
Google Scholar
Eme, P. E., Douwes, J., Kim, N., Foliaki, S. & Burlingame, B. Review of methodologies for assessing sustainable diets and potential for growth of harmonised indicators. Int. J. Environ. Res. Public Health 16, 1184 (2019).
Google Scholar
van de Kamp, M. E. et al. Healthy diets with diminished environmental influence? The greenhouse gasoline emissions of varied diets adhering to the Dutch meals primarily based dietary pointers. Food Res. Int. 104, 14–24 (2018).
Google Scholar
Mertens, E. et al. Improving well being and carbon footprints of European diets utilizing a benchmarking strategy. Public Health Nutr. 24, 565–575 (2021).
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding human growth on a altering planet. Science 347, 1259855 (2015).
Google Scholar
Campbell, B. M. et al. Agriculture production as a main driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22, 4 (2017).
Google Scholar
Frehner, A., Muller, A., Schader, C., De Boer, I. J. M. & Van Zanten, H. H. E. Methodological selections drive variations in environmentally-friendly dietary options. Glob. Food Sec. 24, 100333 (2020).
Google Scholar
Poore, J. & Nemecek, T. Reducing meals’s environmental impacts by way of producers and shoppers. Science 360, 987–992 (2018).
Google Scholar
Röös, E. et al. Greedy or needy? Land use and local weather impacts of meals in 2050 beneath totally different livestock futures. Glob. Environ. Chang. 47, 1–12 (2017).
Google Scholar
Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Chang. Biol. 24, 4185–4194 (2018).
Google Scholar
Van Hal, O. et al. Upcycling meals leftovers and grass sources by way of livestock: Impact of livestock system and productiveness. J. Clean. Prod. 219, 485–496 (2019).
Google Scholar
Schader, C., Muller, A., Scialabba, N. E., Hecht, J. & Stolze, M. Comparing international and product-based LCA views on environmental impacts of low-concentrate ruminant production. In Proc. ninth International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014) (eds Schenck, R. & Huizen, D.) San Francisco, California, USA, 1203–1209 (2014).
Van Kernebeek, H. R. J., Oosting, S. J., Van Ittersum, M. Ok., Bikker, P. & De Boer, I. J. M. Saving land to feed a rising inhabitants: penalties for consumption of crop and livestock merchandise. Int. J. Life Cycle Assess. 21, 677–687 (2016).
Google Scholar
Van Zanten, H. H. E., Wan Ittersum, M. Ok. D. & e Boer, I. J. M. The function of livestock in a round meals system. Glob. Food Sec. 21, 18–22 (2019).
Google Scholar
De Boer, I. J. M. & Van Ittersum, M. Ok. Circularity in Agricultural Production (Wageningen University & Research, 2018) https://www.wur.nl/upload_mm/7/5/5/14119893-7258-45e6-b4d0-e514a8b6316a_Circularity-in-agricultural-production-20122018.pdf
Mottet, A. et al. Livestock: on our plates or consuming at our desk? A brand new evaluation of the feed/meals debate. Glob. Food Sec. 14, 1–8 (2017).
Google Scholar
Schader, C. et al. Impacts of feeding much less food-competing feedstuffs to livestock on international meals system sustainability. J. R. Soc. Interface 12, 20150891 (2015).
Google Scholar
Dietary Reference Values for Nutrients. Summary Report (European Food Safety Authority, 2017).
Aune, D. et al. Whole grain consumption and danger of heart problems, most cancers, and all trigger and trigger particular mortality: systematic assessment and dose–response meta-analysis of potential research. BMJ 353, 1–14 (2016).
Plutzar, C. et al. Changes in the spatial patterns of human appropriation of internet main production (HANPP) in Europe 1990–2006. Reg. Environ. Chang. 16, 1225–1238 (2016).
Google Scholar
Haberl, H. et al. Quantifying and mapping the human appropriation of internet main production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
Google Scholar
Velthof, G. L. et al. Integrated evaluation of nitrogen losses from agriculture in EU-27 utilizing Miterra-Europe. J. Environ. Qual. 38, 402–417 (2009).
Google Scholar
Elizabeth, L., Machado, P., Zinöcker, M., Baker, P. & Lawrence, M. Ultra-processed meals and well being outcomes: a narrative assessment. Nutrients 12, 1955 (2020).
Google Scholar
Murphy, S. P. & Allen, L. H. Nutritional significance of animal supply meals. J. Nutr. 133, 3932S–3935S (2003).
Google Scholar
Röös, E. et al. Protein futures for Western Europe: potential land use and local weather impacts in 2050. Reg. Environ. Chang. 17, 367–377 (2017).
Google Scholar
Etemadi, A. et al. Mortality from totally different causes related to meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: inhabitants primarily based cohort research. BMJ 357, j1957 (2017).
Google Scholar
Papargyropoulou, E., Lozano, R., Steinberger, J. Ok., Wright, N. & Ujang, Z. Bin The meals waste hierarchy as a framework for the administration of meals surplus and meals waste. J. Clean. Prod. 76, 106–115 (2014).
Google Scholar
zu Ermgassen, E. Ok. H. J., Phalan, B., Green, R. E. & Balmford, A. Reducing the land use of EU pork production: the place there’s swill, there’s a approach. Food Policy 58, 35–48 (2016).
Google Scholar
Herrero, M. et al. Innovation can speed up the transition in direction of a sustainable meals system. Nat. Food 1, 266–272 (2020).
Google Scholar
Carlson, Ok. M. et al. Greenhouse gasoline emissions depth of world croplands. Nat. Clim. Chang. 7, 63–68 (2017).
Google Scholar
Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Field Crops Res. 149, 262–268 (2013).
Google Scholar
Fischer, T., Byerlee, D. & Edmeades, G. Crop yields and international meals safety. Will yield improve proceed to feed the world? Eur. Rev. Agric. Econ. 43, 191–192 (2016).
Google Scholar
Schils, R. et al. Cereal yield gaps throughout Europe. Eur. J. Agron. 101, 109–120 (2018).
Google Scholar
FAOSTAT (FAO, 2019) http://www.fao.org/faostat/en/#home
Vellinga, T. V. et al. Methodology used in feedprint: a instrument quantifying greenhouse gasoline emissions of feed production and utilization. Livest. Res. Rep. 674, 121 (2013).
Technical Conversion Factors for Agricultural Commodities (FAO, 1996).
Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste—Extent, Causes and Prevention (2011).
van Hal, O. Upcycling Biomass in a Circular Food System: The Role of Livestock and Fish. PhD thesis, Wageningen University (2020) https://doi.org/10.18174/524412
Spek, J. W. & Van Wesemael, D. CVB Feed Table 2021 (CVB, 2021) www.cvbdiervoeding.nl
International Aquaculture Feed Formulation Database (IAFFD, 2018).
Food and Nutrient Database (US Department of Agriculture, 2020).
L. A. Lagerwerf, A. Bannink, C. van Bruggen, C. M. Groenestein, J. F. M. Huijsmans, WOt-technical report 148 J. W. H. van der Kolk, H. H. Luesink, S. M. van der Sluis, G. L. Velthof & J. Vonk Methodology for Estimating Emissions from Agriculture in the Netherlands—Update 2019 (Statutory Research Tasks Unit for Nature & the Environment, 2019) https://library.wur.nl/WebQuery/wurpubs/549203
Van Hal, O., Weijenberg, A. A. A., De Boer, I. J. M. & Van Zanten, H. H. E. Accounting for feed–meals competitors in environmental influence evaluation: in direction of a useful resource environment friendly food-system. J. Clean. Prod. 240, 118241 (2019).
Google Scholar
IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, 87 (IPCC, 2006).
Zom, R. L. G. & Groenestein, C. M. Excretion of risky solids by livestock to calculate methane production from manure. RAMIRAN 2015, sixteenth International Conference Rural-Urban Symbiosis, eighth – tenth September 2015, Hamburg, Germany (2015).
IPCC Guidelines for National Greenhouse Gas Inventories Ch. 11, 54 (2006).
MacLeod, M. J., Hasan, M. R., Robb, D. H. & Mamun-Ur-Rashid, M. Quantifying greenhouse gasoline emissions from international aquaculture. Sci Rep. 10, 11679 (2020).
Google Scholar
IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013) https://www.ipcc.ch/report/ar5/wg1/