Cost and attainability of meeting stringent climate targets without overshoot


  • 1.

    McCollum, D. L. et al. Energy funding wants for fulfilling the Paris Agreement and reaching the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).

    Google Scholar 

  • 2.

    Bauer, N. et al. Global power sector emission reductions and bioenergy use: overview of the bioenergy demand section of the EMF-33 mannequin comparability. Clim. Change (2018).

  • 3.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).


    Google Scholar 

  • 4.

    Riahi, Ok. et al. The Shared Socioeconomic Pathways and their power, land use, and greenhouse gasoline emissions implications: an summary. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 5.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  • 6.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 93–174 (IPCC, WMO, 2018).

  • 7.

    Riahi, Ok. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the fee and feasibility of long-term climate targets. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Google Scholar 

  • 8.

    Tavoni, M. et al. Post-2020 climate agreements within the main economies assessed within the mild of international fashions. Nat. Clim. Change 5, 119–126 (2015).

    Google Scholar 

  • 9.

    Azar., C., Johansson, D. J. A. & Mattsson, N. Meeting international temperature targets—the position of bioenergy with carbon seize and storage. Environ. Res. Lett. (2013).

  • 10.

    Tanaka, Ok. & O’Neill, B. The Paris Agreement zero-emissions objective isn’t all the time in line with the 1.5 °C and 2 °C temperature targets. Nat. Clim. Change 8, 319–324 (2018).


    Google Scholar 

  • 11.

    Rogelj, J. et al. A brand new state of affairs logic for the Paris Agreement long-term temperature objective. Nature 573, 357–363 (2019).


    Google Scholar 

  • 12.

    Johansson D. J. A., Azar., C., Lehtveer, M. & Peters, G. P. The position of detrimental carbon emissions in reaching the Paris climate targets: the influence of goal formulation in built-in evaluation fashions. Environ. Res. Lett. (2020).

  • 13.

    Anderson, Ok. & Peters, G. The hassle with detrimental emissions. Science 354, 182–183 (2016).


    Google Scholar 

  • 14.

    Geden, O. Policy: climate advisers should keep integrity. Nature 521, 27–28 (2015).


    Google Scholar 

  • 15.

    Peters, G. P. & Geden, O. Catalysing a political shift from low to detrimental carbon. Nat. Clim. Change 7, 619–621 (2017).

    Google Scholar 

  • 16.

    Rogelij, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are obscure: 3 ways to repair. Nature 591, 365–368 (2021).

    Google Scholar 

  • 17.

    Fujimori, S., Rogelj, J., Krey, V. & Riahi, Ok. A brand new era of emissions situations ought to cowl blind spots within the carbon funds house. Nat. Clim. Change 9, 798–800 (2019).


    Google Scholar 

  • 18.

    de Coninck, H. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 4 (IPCC, WMO, 2018).

  • 19.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road state of affairs for the twenty first century. Glob. Environ. Change 42, 251–267 (2017).

    Google Scholar 

  • 20.

    MacDougall, A. H. et al. Is there warming within the pipeline? A multi-model evaluation of the zero emissions dedication from CO2. Biogeosciences 17, 2987–3016 (2020).

    Google Scholar 

  • 21.

    Fuglestvedt, J. et al. Implications of attainable interpretations of ‘greenhouse gas balance’ within the Paris Agreement. Philos. Trans. R. Soc. A 376, 20160445 (2018).

    Google Scholar 

  • 22.

    A Clean Planet for All: Long-Term Low Greenhouse Gas Emission Development Strategy of the European Union and its Member States (European Commission, 2018).

  • 23.

    Van Vuuren, D. P. et al. The Representative Concentration Pathways: an summary. Clim. Change 109, 5 (2011).

    Google Scholar 

  • 24.

    Emmerling, J. et al. The position of the low cost price for emission pathways and detrimental emissions. Environ. Res. Lett. 14, 104008 (2019).


    Google Scholar 

  • 25.

    Rogelj, J., McCollum, D. L., O’Neill, B. C. & Riahi, Ok. 2020 emissions ranges required to restrict warming to under 2 °C. Nat. Clim. Change 3, 405–412 (2013).


    Google Scholar 

  • 26.

    Kriegler, E. et al. Short time period insurance policies to maintain the door open for Paris climate targets. Environ. Res. Lett. 13, 074022 (2018).

    Google Scholar 

  • 27.

    Fuss, S. et al. Negative emissions—Part 2: prices, potentials and unwanted effects. Environ. Res. Lett. 13, 063002 (2018).

    Google Scholar 

  • 28.

    IPCC: Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO, 2019).

  • 29.

    Realmonte, G. et al. An inter-model evaluation of the position of direct air seize in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).


    Google Scholar 

  • 30.

    Riahi, Ok. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) 1203–1306 (Cambridge Univ. Press, 2012).

  • 31.

    Fujimori, S., Kainuma, M., Masui, T., Hasegawa, T. & Dai, H. The effectiveness of power service demand discount: a state of affairs evaluation of international climate change mitigation. Energy Policy 75, 379–391 (2014).

    Google Scholar 

  • 32.

    Grubler, A. et al. A low power demand state of affairs for meeting the 1.5 °C goal and sustainable growth targets without detrimental emission applied sciences. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  • 33.

    Wilson, C. et al. Granular applied sciences to speed up decarbonization. Science 368, 36–39 (2020).


    Google Scholar 

  • 34.

    Grubler, A. et al. A low power demand state of affairs for meeting the 1.5 °C goal and sustainable growth targets without detrimental emission applied sciences. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  • 35.

    Creutzig, F. et al. Towards demand-side options for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Google Scholar 

  • 36.

    Höhne, N., den Elzen, M. & Escalante, D. Regional GHG discount targets primarily based on effort sharing: a comparability of research. Clim. Policy 14, 122–147 (2014).

    Google Scholar 

  • 37.

    Statement by H.E. Xi Jinping President of the People’s Republic of China on the General Debate of the seventy fifth Session of the United Nations General Assembly (Ministry of Foreign Affairs, the People’s Republic of China, 2020);

  • 38.

    Submission by Croatia and the European Commission on Behalf of the European Union and its Member States (UNFCCC, 2020);

  • 39.

    Policy Speech by the Prime Minister to the 203rd Session of the Diet (Cabinet Public Relations Office, Japan, 2020);

  • 40.

    Address by President Moon Jae-in at National Assembly to Propose Government Budget for 2021 (Office of the President, Republic of Korea, 2020);

  • 41.

    Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, Ok. Land use illustration in a world CGE mannequin for long-term simulation: CET vs. logit features. Food Secur. 6, 685–699 (2014).

    Google Scholar 

  • 42.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [basic] Manual Discussion Paper Series (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 2012).

  • 43.

    Pedro, R. Development of a Global Integrated Energy Model to Evaluate the Brazilian Role in Climate Change Mitigation Scenarios. DSc thesis, Programa de Planejamento Energético, COPPE/UFRJ (2016).

  • 44.

    Capros, P. et al. Description of fashions and situations used to evaluate European decarbonisation pathways. Energy Strategy Rev. 2, 220–230 (2014).

    Google Scholar 

  • 45.

    GEM-E3 Model Manual 2017 (E3Mlab, 2017).

  • 46.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  • 47.

    Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for built-in and cross-cutting evaluation of power, climate, the atmosphere, and sustainable growth. Environ. Model. Softw. 112, 143–156 (2019).

    Google Scholar 

  • 48.

    van der Zwaan, B., Kober, T., Longa, F. D., van der Laan, A. & Jan Kramer, G. An built-in evaluation of pathways for low-carbon growth in Africa. Energy Policy 117, 387–395 (2018).

    Google Scholar 

  • 49.

    Després, J. et al. POLES-JRC Model Documentation (European Union, 2018).

  • 50.

    Kriegler, E. Fossil-fueled growth (SSP5): an power and useful resource intensive state of affairs for the twenty first century. Glob. Environ. Change (2017).

  • 51.

    Luderer, G. Economic mitigation challenges: how additional delay closes the door for reaching climate targets. Environ. Res. Lett. (2013).

  • 52.

    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. A World Induced Technical Change Hybrid mannequin. Energy J. 27, 13–38 (2006).

    Google Scholar 

  • 53.

    Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways (Fondazione Eni Enrico Mattei, 2016).

  • 54.

    Hasegawa, T. et al. Risk of elevated meals insecurity beneath stringent international climate change mitigation coverage. Nat. Clim. Change 8, 699–703 (2018).

    Google Scholar 

  • 55.

    Fujimori, S. et al. Inclusive Climate Change mitigation and meals safety coverage beneath 1.5 °C climate objective. Environ. Res. Lett. 13, 074033 (2018).

    Google Scholar 

  • 56.

    Leclère, D. et al. Bending the curve of terrestrial biodiversity wants an built-in technique. Nature 585, 551–556 (2020).

    Google Scholar 

  • 57.

    Ohashi, H. et al. Biodiversity can profit from climate stabilization regardless of antagonistic unwanted effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    Google Scholar 

  • 58.

    World Energy Outlook 2020 (IEA, 2020).

  • 59.

    Andrijevic, M., Schleussner, C.-F., Gidden, M. J., McCollum, D. L. & Rogelj, J. COVID-19 restoration funds dwarf clear power funding wants. Science 370, 298–300 (2020).


    Google Scholar 

  • 60.

    Harmsen, M. et al. Integrated evaluation mannequin diagnostics: key indicators and mannequin evolution. Environ. Res. Lett. 16, 054046 (2021).

    Google Scholar 

  • 61.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting international warming to 2 °C. Nature 458, 1158–1162 (2009).


    Google Scholar 

  • 62.

    Meinshausen, M., Raper, S. C. & Wigley, T. M. Emulating coupled environment–ocean and carbon cycle fashions with a less complicated mannequin, MAGICC6—Part 1: mannequin description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).


    Google Scholar 

  • 63.

    Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of doubtlessly decrease climate sensitivity on climate projections and coverage. Environ. Res. Lett. 9, 031003 (2014).

    Google Scholar 

  • 64.

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming beneath outdated and new situations utilizing IPCC climate sensitivity vary estimates. Nat. Clim. Change 2, 248–253 (2012).

    Google Scholar 

  • 65.

    Riahi, Ok. et al. ENGAGE Global Scenarios (Version 2.0) (Zenodo, 2021);