ADVERTISEMENT

Diversity and evolution of the animal virome

548
SHARES
2.5k
VIEWS


  • 1.

    Wasik, B. R. & Turner, P. E. On the organic success of viruses. Annu. Rev. Microbiol. 67, 519–541 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Holmes, E. C. The Evolution and Emergence of RNA Viruses (Oxford University Press, 2009).

  • 3.

    Loeffler, F. A. J. & Frosch, P. Berichte der Kommission zur Erforschung der Maul- und Klauenseuche bei dem Institut für Infektionskrankheiten in Berlin (G. Fischer, 1898).

  • 4.

    Kumar, A., Murthy, S. & Kapoor, A. Evolution of selective-sequencing approaches for virus discovery and virome evaluation. Virus Res. 239, 172–179 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Shi, M. et al. Divergent viruses found in arthropods and vertebrates revise the evolutionary historical past of the Flaviviridae and associated viruses. J. Virol. 90, 659–669 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Zhang, Y. Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an increasing virosphere. Cell 172, 1168–1172 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Ambrose, H. E. & Clewley, J. P. Virus discovery by sequence-independent genome amplification. Rev. Med. Virol. 16, 365–383 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Shi, M. et al. The evolutionary historical past of vertebrate RNA viruses. Nature 556, 197–202 (2018). Major examine of the phylogenetic range of RNA viruses carried by numerous vertebrates, displaying that many of the virus households related to mammals have a deep ancestry with evolutionary roots in fish.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Buchfink, B., Reuter, Ok. & Drost, H. G. Sensitive protein alignments at tree-of-life scale utilizing diamond. Nat. Methods 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open Biol. 7, 170189 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Fernández, R. & Gabaldón, T. Gene achieve and loss throughout the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Paraskevopoulou, S. et al. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol. 7, veab030 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Murphy, F. A. Historical perspective: what constitutes discovery (of a brand new virus)? Adv. Virus Res. 95, 197–220 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Greninger, A. L. A decade of RNA virus metagenomics is (not) sufficient. Virus Res. 244, 218–229 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Li, C. X. et al. Unprecedented genomic range of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015). First article to indicate that invertebrateson this case arthropodsharbour an unlimited range of RNA viruses, usually at excessive abundance. Provides the first description of the chuviruses, that are characterised by numerous genome constructions.

    PubMed Central 

    Google Scholar 

  • 18.

    Donaldson, E. F. et al. Metagenomic evaluation of the viromes of three North American bat species: viral range amongst completely different bat species that share a standard habitat. J. Virol. 84, 13004–13018 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Li, L. et al. The fecal viral flora of California sea lions. J. Virol. 85, 9909–9917 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Ge, X. et al. Metagenomic evaluation of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86, 4620–4630 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Walker, P. J. et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. https://doi.org/10.1007/s00705-021-05156-1 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Lauber, C. et al. Deciphering the origin and evolution of hepatitis B viruses by means of a household of non-enveloped fish viruses. Cell Host Microbe 22, 387–399.e386 (2017). Major examine of the phylogenetic range of HBV-like viruses in fish, together with the discovery of a gaggle of associated virusesthe nackednavirusesthat lack the envelope protein.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Geoghegan, J. L. et al. Hidden range and evolution of viruses in market fish. Virus Evol. 4, vey031 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Zeigler Allen, L. et al. The Baltic Sea virome: range and transcriptional exercise of DNA and RNA viruses. mSystems 2, e00125–16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Parry, R., Wille, M., Turnbull, O. M. H., Geoghegan, J. L. & Holmes, E. C. Divergent influenza-like viruses of amphibians and fish assist an historical evolutionary affiliation. Viruses 12, 1042 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Geoghegan, J. L. et al. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol. 7, veab005 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Costa, V. A. et al. Metagenomic sequencing reveals an absence of virus trade between native and invasive freshwater fish throughout the Murray–Darling Basin, Australia. Virus Evol. 7, veab034 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Miller, A. Ok. et al. Slippery when moist: cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary historical past of the Coronaviridae. Virus Evol. 7, veab050 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    López-Bueno, A. et al. Concurrence of iridovirus, polyomavirus, and a novel member of a brand new group of fish papillomaviruses in lymphocystis disease-affected gilthead sea bream. J. Virol. 90, 8768–8779 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Wu, F. et al. A brand new coronavirus related to human respiratory illness in China. Nature 579, 265–269 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Wang, W. et al. Extensive genetic range and host vary of rodent-borne coronaviruses. Virus Evol. 6, veaa078 (2021).

    Google Scholar 

  • 33.

    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Temmam, S. et al. Coronaviruses with a SARS-CoV-2-like receptor-binding area permitting ACE2-mediated entry into human cells remoted from bats of Indochinese peninsula. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-871965/v1 (2021).

    Article 

    Google Scholar 

  • 35.

    van Aart, A. E. et al. SARS-CoV-2 an infection in cats and canine in contaminated mink farms. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14173 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between people and mink and again to people. Science 371, 172–177 (2021). Demonstration of the broad host vary of SARS-CoV-2, mirrored in a significant outbreak in farmed mink. That the virus was capable of unfold again to people exhibits that some animal species might turn out to be SARS-CoV-2 reservoirs.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Chandler, J. C. et al. SARS-CoV-2 publicity in wild white-tailed deer (Odocoileus virginianus). Preprint at bioRxiv https://doi.org/10.1101/2021.07.29.454326 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Lam, T. T.-Y. et al. Identifying SARS-CoV-2 associated coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Zhou, H. et al. Identification of novel bat coronaviruses sheds mild on the evolutionary origins of SARS-CoV-2 and associated viruses. Cell 184, 4380–4391 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Corman, V. M., Muth, D., Niemeyer, D. & Drosten, C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 100, 163–188 (2018). Important evaluation of the human coronaviruses highlighting their range, evolutionary historical past and zoonotic origins.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Edgar, R. C. et al. Petabase-scale sequence alignment catalyses viral discovery. Preprint at bioRxiv https://doi.org/10.1101/2020.08.07.241729 (2020).

    Article 

    Google Scholar 

  • 42.

    Salehi-Ashtiani, Ok., Lupták, A., Litovchick, A. & Szostak, J. W. A genomewide seek for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Chang, W.-S. et al. Novel hepatitis D-like brokers in vertebrates and invertebrates. Virus Evol. 5, vez021 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Hetzel, U. et al. Identification of a novel deltavirus in boa constrictors. mBio 10, e00014-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Iwamoto, M. et al. Identification of novel avian and mammalian deltaviruses offers new insights into deltavirus evolution. Virus Evol. 7, veab003 (2021). Overview of the evolution of deltaviruses (that’s, HDV-like viruses) in birds and mammals. Reveals the historical historical past and range of these viruses and exhibits that they don’t seem to be solely related to people or HBV.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Paraskevopoulou, S. et al. Mammalian deltavirus with out hepadnavirus coinfection in the neotropical rodent Proechimys semispinosus. Proc. Natl Acad. Sci. USA 117, 17977–17983 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Taubenberger, J. Ok. & Kash, J. C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7, 440–451 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Joseph, U., Su, Y. C., Vijaykrishna, D. & Smith, G. J. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir. Viruses 11, 74–84 (2017).

    PubMed 

    Google Scholar 

  • 49.

    Wu, H. et al. Abundant and numerous RNA viruses in bugs revealed by RNA-Seq evaluation: ecological and evolutionary implications. mSystems 5, e00039-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Van Eynde, B. et al. Exploration of the virome of the European brown shrimp (Crangon crangon). J. Gen. Virol. 101, 651–666 (2020).

    PubMed 

    Google Scholar 

  • 51.

    Laffy, P. W. et al. Reef invertebrate viromics: range, host specificity and purposeful capability. Environ. Microbiol. 20, 2125–2141 (2018).

    PubMed 

    Google Scholar 

  • 52.

    Tokarz, R. et al. Virome evaluation of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel extremely divergent vertebrate and invertebrate viruses. J. Virol. 88, 11480–11492 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Käfer, S. et al. Re-assessing the range of destructive strand RNA viruses in bugs. PLoS Pathog. 15, e1008224 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Ramírez, A. L. et al. Metagenomic evaluation of the virome of mosquito excreta. mSphere 5, e00587-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Brinkmann, A. et al. A metagenomic survey identifies Tamdy orthonairovirus in addition to divergent phlebo-, rhabdo-, chu- and flavi-like viruses in Anatolia, Turkey. Ticks Tick. Borne Dis. 9, 1173–1183 (2018).

    PubMed 

    Google Scholar 

  • 56.

    Gudenkauf, B. M. & Hewson, I. Comparative metagenomics of viral assemblages inhabiting 4 phyla of marine invertebrates. Front. Mar. Sci. 3, 23 (2016).

    Google Scholar 

  • 57.

    Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of mushy fruit. Virus Evol. 4, vey009 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Webster, C. L. et al. The discovery, distribution, and evolution of viruses related to Drosophila melanogaster. PLoS Biol. 13, e1002210 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Hameed, M. et al. A metagenomic evaluation of mosquito virome collected from completely different animal farms at Yunnan–Myanmar border of China. Front. Microbiol. 11, 591478 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Sadeghi, M. et al. Virome of >12 thousand Culex mosquitoes from all through California. Virology 523, 74–88 (2018). Major metagenomic examine of virome range in mosquitoes displaying the energy of this expertise for high-throughput virus screening at a single location.

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    He, X. et al. Metagenomic sequencing reveals viral abundance and range in mosquitoes from the Shaanxi-Gansu-Ningxia area, China. PLoS Negl. Trop. Dis. 15, e0009381 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Marklewitz, M., Zirkel, F., Kurth, A., Drosten, C. & Junglen, S. Evolutionary and phenotypic evaluation of stay virus isolates suggests arthropod origin of a pathogenic RNA virus household. Proc. Natl Acad. Sci. USA 112, 7536–7541 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Schmidlin, Ok. et al. A novel lineage of polyomaviruses recognized in bark scorpions. Virology 563, 58–63 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Qin, X. C. et al. A tick-borne segmented RNA virus accommodates genome segments derived from unsegmented viral ancestors. Proc. Natl Acad. Sci. USA 111, 6744–6749 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Ladner, J. T. et al. A multicomponent animal virus remoted from mosquitoes. Cell Host Microbe 20, 357–367 (2016). First description of a multicomponent virus in an animal. Highlights the complexity of genome evolution in RNA viruses, on this case in the flavi-like viruses.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Argenta, F. F. et al. Identification of reptarenaviruses, hartmaniviruses, and a novel chuvirus in captive native Brazilian boa constrictors with boid inclusion physique illness. J. Virol. 94, e00001-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Pybus, O. G., Rambaut, A., Holmes, E. C. & Harvey, P. H. New inferences from tree form: numbers of lacking taxa and inhabitants progress charges. Syst. Biol. 51, 881–888 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Kapusinszky, B. et al. Local virus extinctions following a bunch inhabitants bottleneck. J. Virol. 89, 8152–8161 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    McKee, C. D., Bai, Y., Webb, C. T. & Kosoy, M. Y. Bats are key hosts in the radiation of mammal-associated Bartonella micro organism. Infect. Genet. Evol. 89, 104719 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic occasions and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial perform: are bats ‘special’ as reservoirs for rising viruses? Curr. Opin. Virol. 1, 649–657 (2011). One of the first articles to suggest that bats are uniquely essential hosts for rising viruses and that host mass extinction occasions may play a key function in shaping the phylogenetic range of viruses.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Stanley, S. M. Estimates of the magnitudes of main marine mass extinctions in earth historical past. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil report. Science 215, 1501–1503 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral range accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).

    PubMed 

    Google Scholar 

  • 78.

    Geoghegan, J. L., Duchêne, S. & Holmes, E. C. Comparative evaluation estimates the relative frequencies of co-divergence and cross-species transmission inside viral households. PLoS Pathog. 13, e1006215 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Racaniello, V. Moving past metagenomics to search out the subsequent pandemic virus. Proc. Natl Acad. Sci. USA 113, 2812–2814 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Morse, S. S. et al. Prediction and prevention of the subsequent pandemic zoonosis. Lancet 380, 1956–1965 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Smith, I. & Wang, L. F. Bats and their virome: an essential supply of rising viruses succesful of infecting people. Curr. Opin. Virol. 3, 84–91 (2013).

    PubMed 

    Google Scholar 

  • 82.

    Olival, Ok. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to trigger epidemics after spillover? Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190017 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Düx, A. et al. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368, 1367–1370 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Tabachnick, W. J. Climate change and the arboviruses: classes from the evolution of the dengue and yellow fever viruses. Annu. Rev. Virol. 3, 125–145 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Fritzell, C. et al. Current challenges and implications for dengue, chikungunya and Zika seroprevalence research worldwide: a scoping evaluation. PLoS Negl. Trop. Dis. 12, e0006533 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Campbell-Lendrum, D., Manga, L., Bagayoko, M. & Sommerfeld, J. Climate change and vector-borne illnesses: what are the implications for public well being analysis and coverage? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20130552 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Jacob, S. T. et al. Ebola virus illness. Nat. Rev. Dis. Prim. 6, 13 (2020).

    Google Scholar 

  • 89.

    Gould, E. A. & Higgs, S. Impact of local weather change and different components on rising arbovirus illnesses. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Marcondes, M. & Day, M. J. Current standing and administration of canine leishmaniasis in Latin America. Res. Vet. Sci. 123, 261–272 (2019).

    PubMed 

    Google Scholar 

  • 91.

    Brock, P. M. et al. Predictive evaluation throughout spatial scales hyperlinks zoonotic malaria to deforestation. Proc. Biol. Sci. 286, 20182351 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Ayala, A. J., Yabsley, M. J. & Hernandez, S. M. A evaluation of pathogen transmission at the yard rooster–wild chook interface. Front. Vet. Sci. 7, 662 (2020).

    Google Scholar 

  • 93.

    Munoz, O. et al. Genetic adaptation of influenza A viruses in home animals and their potential function in interspecies transmission: a literature evaluation. Ecohealth 13, 171–198 (2016).

    PubMed 

    Google Scholar 

  • 94.

    Peiris, J. S., de Jong, M. D. & Guan, Y. Avian influenza virus (H5N1): a risk to human well being. Clin. Microbiol. Rev. 20, 243–267 (2007). Review of the ecology and evolution of H5N1 avian influenza virus, notably the way it emerges in people from its avian reservoir populations and its related pandemic threat.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Schelling, E., Thur, B., Griot, C. & Audige, L. Epidemiological examine of Newcastle illness in yard poultry and wild chook populations in Switzerland. Avian Pathol. 28, 263–272 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Boros, Á. et al. A diarrheic rooster concurrently co-infected with a number of picornaviruses: full genome evaluation of avian picornaviruses representing as much as six genera. Virology 489, 63–74 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Lang, A. S. et al. Assessing the function of seabirds in the ecology of influenza A viruses. Avian Dis. 60, 378–386 (2016).

    PubMed 

    Google Scholar 

  • 98.

    Lickfett, T. M., Clark, E., Gehring, T. M. & Alm, E. W. Detection of influenza A viruses at migratory chook stopover websites in Michigan, USA. Infect. Ecol. Epidemiol. 8, 1474709 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Rezza, G. Dengue and chikungunya: long-distance unfold and outbreaks in naïve areas. Pathog. Glob. Health 108, 349–355 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Fritzsche McKay, A. & Hoye, B. J. Are migratory animals superspreaders of an infection? Integr. Comp. Biol. 56, 260–267 (2016).

    PubMed 

    Google Scholar 

  • 101.

    Jeong, S. et al. Introduction of avian influenza A(H6N5) virus into Asia from North America by wild birds. Emerg. Infect. Dis. 25, 2138–2140 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Pettersson, J. H. O. et al. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathog. 16, e1008759 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Albery, G. F., Eskew, E. A., Ross, N. & Olival, Ok. J. Predicting the world mammalian viral sharing community utilizing phylogeography. Nat. Commun. 11, 2260 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Dill, J. A. et al. Distinct viral lineages from fish and amphibians reveal the complicated evolutionary historical past of hepadnaviruses. J. Virol. 90, 7920–7933 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Mollentze, N. & Streicker, D. G. Viral zoonotic threat is homogenous amongst taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Mollentze, N., Babayan, S. A. & Streicker, D. G. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 19, e3001390 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Wille, M., Geoghegan, J. L. & Holmes, E. C. How precisely can we assess zoonotic threat? PLoS Biol. 19, e3001135 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Kohl, C. et al. The virome of German bats: evaluating virus discovery approaches. Sci. Rep. 11, 7430 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Li, L. et al. Bat guano virome: predominance of dietary viruses from bugs and crops plus novel mammalian viruses. J. Virol. 84, 6955–6965 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Kemenesi, G. et al. Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis. 14, 846–855 (2014).

    PubMed 

    Google Scholar 

  • 111.

    Letko, M., Seifert, S. N., Olival, Ok. J., Plowright, R. Ok. & Munster, V. J. Bat-borne virus range, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020). Extensive evaluation of the related biology of bats and the viruses they carry, notably in the context of SARS-CoV-2.

    CAS 
    PubMed 

    Google Scholar 

  • 112.

    Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L.-F. Lessons from the host defences of bats, a novel viral reservoir. Nature 589, 363–370 (2021). Timely evaluation outlining the the reason why bats is likely to be uniquely essential virus reservoirs and what this may imply for understanding future emergence occasions.

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Banerjee, A. et al. Novel insights into immune techniques of bats. Front. Immunol. 11, 26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Holmes, E. C., Rambaut, A. & Andersen, Ok. G. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 115.

    Sanjuán, R. & Domingo-Calap, P. Mechanisms of viral mutation. Cell Mol. Life Sci. 73, 4433–4448 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Plowright, R. Ok. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017). Benchmark evaluation of the ecological processes by which viruses can spill over and emerge in new hosts, figuring out this as a key course of in virus evolution.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Holmes, E. C. et al. The origins of SARS-CoV-2: a important evaluation. Cell 184, 4848–4856 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Johnson, B. A. et al. Loss of furin cleavage web site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Wrobel, A. G. SARS-CoV-2 and bat RaTG13 spike glycoprotein constructions inform on virus evolution and furin-cleavage results. Nat. Struct. Mol. Biol. 27, 763–767 (2020). Detailed structural virology examine that demonstrates that even carefully associated human and animal coronaviruses can differ profoundly in receptor-binding means.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Wilson, M. R. et al. Chronic meningitis investigated through metagenomic next-generation sequencing. JAMA Neurol. 75, 947–955 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Wilson, M. R. et al. Clinical metagenomic sequencing for analysis of meningitis and encephalitis. N. Engl. J. Med. 380, 2327–2340 (2019). Key article displaying the significance of mNGS in a scientific diagnostic setting, on this case for the identification of the microbial pathogens related to meningitis and encephalitis.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Xu, G. J. et al. Comprehensive serological profiling of human populations utilizing an artificial human virome. Science 348, aaa0698 (2015). Presents VirScana way for the high-throughput screening of viruses by figuring out antiviral antibodies in human sera. Although initially designed to display screen the human virome, the methodology could possibly be tailored to detect zoonotic viruses.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Field, H. E., Mackenzie, J. S. & Daszak, P. Henipaviruses: rising paramyxoviruses related to fruit bats. Curr. Top. Microbiol. Immunol. 315, 133–159 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Harvey, E. et al. Extensive range of RNA viruses in Australian ticks. J. Virol. 93, e01358-18 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Wille, M. et al. Sustained RNA virome range in Antarctic penguins and their ticks. ISME J. 14, 1768–1782 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Di Giallonardo, F., Schlub, T. E., Shi, M. & Holmes, E. C. Dinucleotide composition in RNA viruses is formed extra by virus household than host species. J. Virol. 91, e02381-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral darkish matter. Virus Res. 239, 136–142 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 128.

    Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does construction inform us about virus evolution? Curr. Opin. Struct. Biol. 15, 655–663 (2005). Demonstrates how patterns of evolutionary relatedness are preserved in the construction of viral capsid proteins. Lays the basis for a way protein structural data can be utilized to deduce phylogenetic relationships.

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Illergård, Ok., Ardell, D. H. & Elofsson, A. Structure is three to 10 instances extra conserved than sequence — a examine of structural response in protein cores. Proteins 77, 499–508 (2009).

    PubMed 

    Google Scholar 

  • 130.

    Harrison, S. C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Fédry, J. et al. The historical gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell 168, 904–915 (2017). Demonstration of how protein construction can reveal historical evolutionary homologies, on this case between an algal gamete fusogen and a category II viral membrane fusion protein.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Henderson, R. Overview and future of single particle electron cryomicroscopy. Arch. Biochem. Biophys. 581, 19–24 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 133.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comp. Biol. 7, e1002195 (2011).

    CAS 

    Google Scholar 

  • 134.

    Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of Archaea: structural, purposeful, environmental and evolutionary genomics. Virus Res. 244, 181–193 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 135.

    Holmes, E. C. & Duchêne, S. Can sequence phylogenies safely infer the origin of the world virome? mBio 10, e00289-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Chang, G. S. et al. Phylogenetic profiles reveal evolutionary relationships inside the ‘twilight zone’ of sequence similarity. Proc. Natl Acad. Sci. USA 105, 13474–13479 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Wooley, J. C., Godzik, A. & Friedberg, I. A primer on metagenomics. PLoS Comp. Biol. 6, e10006677 (2010).

    Google Scholar 

  • 139.

    O’Neil, D., Glowatz, H. & Schlumpberger, M. Ribosomal RNA depletion for environment friendly use of RNA-seq capability. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb0419s103 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 140.

    Briese, T. et al. Virome seize sequencing allows delicate viral analysis and complete virome evaluation. mBio 6, e01491-15 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 141.

    Chong, R. et al. Fecal viral range of captive and wild Tasmanian devils characterised utilizing virion-enriched metagenomics and metatranscriptomics. J. Virol. 93, e00205-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar