[ad_1]
Ray, D. Okay., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield development and stagnation. Nat. Commun. 3, 1293 (2012).
Google Scholar
FAOSTAT (FAO, 2021); http://www.fao.org/faostat/en/#home
Van Ittersum, M. Okay. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).
Google Scholar
Lobell, D. B., Cassman, Okay. G. & Field, C. B. Crop yield gaps: their significance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).
Ligon, E. & Sadoulet, E. Estimating the relative advantages of agricultural development on the distribution of expenditures. World Dev. 109, 417–428 (2018).
Alwang, J. et al. Pathways from analysis on improved staple crop germplasm to poverty discount for smallholder farmers. Agric. Syst. 172, 16–27 (2019).
Holden, S. T. Fertilizer and sustainable intensification in sub-Saharan Africa. Glob. Food Sec. 18, 20–26 (2018).
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Pelletier, J., Ngoma, H., Mason, N. M. & Barrett, C. B. Does smallholder maize intensification cut back deforestation? Evidence from Zambia. Glob. Environ. Change 63, 102127 (2020).
Global Yield Gap and Water Productivity Atlas (University of Nebraska Lincoln, Wageningen University); www.yieldgap.org
Breman, H. & Debrah, S. Improving African food safety. SAIS Rev. 23, 153–170 (2003).
Vanlauwe, B. et al. Integrated soil fertility administration: operational definition and penalties for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).
Leitner, S. et al. Closing maize yield gaps in sub-Saharan Africa will increase soil N2O emissions. Curr. Opin. Environ. Sustain. 47, 95–105 (2020).
Heisey, P. W. & Mwangi, W. M., Fertilizer Use and Maize Production in Sub-Saharan Africa CIMMYT Economics Working Paper 96-01 (CIMMYT, 1996).
Vanlauwe, B. et al. Agronomic use effectivity of N fertilizer in maize-based programs in sub-Saharan Africa inside the context of built-in soil fertility administration. Plant Soil 339, 35–50 (2011).
Google Scholar
Snapp, S., Jayne, T. S., Mhango, W., Benson, T. & Ricker-Gilbert, J. in National Symposium on Eight Years of FISP—Impact and What Next 14–15 (2014).
Ichami, S. M., Shepherd, Okay. D., Sila, A. M., Stoorvogel, J. J. & Hoffland, E. Fertilizer response and nitrogen use effectivity in African smallholder maize farms. Nutr. Cycling Agroecosyst. 113, 1–19 (2019).
Google Scholar
Rurinda, J. et al. Science-based choice assist for formulating crop fertilizer suggestions in sub-Saharan Africa. Agric. Syst. 180, 102790 (2020).
Google Scholar
Ten Berge, H. F. et al. Maize crop nutrient enter necessities for food safety in sub-Saharan Africa. Glob. Food Sec. 23, 9–21 (2019).
Marenya, P. P. & Barrett, C. B. Soil high quality and fertilizer use charges amongst smallholder farmers in western Kenya. Agric. Econ. 40, 561–572 (2019).
Matsumoto, T. & Yamano, T. in Emerging Development of Agriculture in East Africa 117–132 (Springer, 2011).
Sheahan, M., Black, R. & Jayne, T. S. Are Kenyan farmers under-utilizing fertilizer? Implications for enter intensification methods and analysis. Food Policy 41, 39–52 (2013).
Burke, W. J., Jayne, T. S. & Black, J. R. Factors explaining the low and variable profitability of fertilizer utility to maize in Zambia. Agric. Econ. 48, 115–126 (2017).
Koussoubé, E. & Nauges, C. Returns to fertiliser use: does it pay sufficient? Some new proof from sub-Saharan Africa. Eur. Rev. Agric. Econ. 44, 183–210 (2017).
Xu, Z., Guan, Z., Jayne, T. S. & Black, R. Factors influencing the profitability of fertilizer use on maize in Zambia. Agric. Econ. 40, 437–446 (2009).
Liverpool-Tasie, L. S. O., Omonona, B. T., Sanou, A. & Ogunleye, W. O. Is rising inorganic fertilizer use for maize production in SSA a worthwhile proposition? Evidence from Nigeria. Food Policy 67, 41–51 (2017).
Google Scholar
Spatially-Disaggregated Crop Production Statistics Data in Africa South of the Saharan for 2017 (International Food Policy Research Institute, 2020); https://doi.org/10.7910/DVN/FSSKBW
Breman, H. & De Wit, C. T. Rangeland productiveness and exploitation in the Sahel. Science 221, 1341–1347 (1983).
Google Scholar
Bationo, A. & Mokwunye, A. U. in Alleviating Soil Fertility Constraints to Increased Crop Production in West Africa 195–215 (Springer, 1991).
Levins, R. The technique of mannequin constructing in inhabitants ecology. Am. Sci. 54, 421–431 (1996).
Kaizzi, Okay. C. et al. Maize response to fertilizer and nitrogen use effectivity in Uganda. Agron. J. 104, 73–82 (2012).
Google Scholar
Laajaj, R., Macours, Okay., Masso, C., Thuita, M. & Vanlauwe, B. Reconciling yield features in agronomic trials with returns underneath African smallholder circumstances. Sci. Rep. 10, 1–15 (2020).
Abay, Okay. A., Bevis, L. & Barrett, C. B. Measurement error mechanisms matter: agricultural intensification with farmer misperceptions and misreporting. Am. J. Agric. Econ. 103, 498–522 (2019).
Wahab, I. In-season plot space loss and implications for yield estimation in smallholder rainfed farming programs on the village stage in sub-Saharan Africa. GeoJournal 85, 1–20 (2019).
Google Scholar
Bonilla Cedrez, C., Chamberlin, J., Guo, Z. & Hijmans, R. J. Spatial variation in fertilizer prices in sub-Saharan Africa. PLoS ONE 15, e0227764 (2020).
Google Scholar
Paliwal, A. & Jain, M. The accuracy of self-reported crop yield estimates and their skill to coach distant sensing algorithms. Front. Sustain. Food Syst. 4, 25 (2020).
Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and natural cropping programs. Proc. Natl Acad. Sci. USA 114, 926–931 (2017).
Google Scholar
Global Agricultural Research Data Innovation Acceleration Network (GARDIAN, 2020); https://gardian.bigdata.cgiar.org/#!/
Cedrez, C. B., Chamberlin, J. & Hijmans, R. J. Seasonal, annual, and spatial variation in cereal prices in sub-Saharan Africa. Glob. Food Sec. 26, 100438 (2020).
Google Scholar
You, L. et al. What is the irrigation potential for Africa? A mixed biophysical and socioeconomic method. Food Policy. 36, 770–782 (2011).
Benami, E. et al. Uniting distant sensing, crop modelling and economics for agricultural danger administration. Nat. Rev. Earth Environ. 2, 140–159 (2021).
Google Scholar
Minten, B., Koru, B. & Stifel, D. The final mile(s) in fashionable enter distribution: pricing, profitability, and adoption. Agric. Econ. 44, 629–646 (2013).
World Development Report 2009: Reshaping Economic Geography (World Bank, 2009).
Mukasa, A. N. Technology adoption and danger publicity amongst smallholder farmers: panel information proof from Tanzania and Uganda. World Dev. 105, 299–309 (2018).
Le Cotty, T., Maitre D’Hotel, E. & Ndiaye, M. Transport prices and food value volatility in Africa. J. Afr. Econ. 26, 625–654 (2017).
Dorward, A. & Chirwa, E. The Malawi agricultural enter subsidy programme: 2005/06 to 2008/09. Int. J. Agric. Sustain. 9, 232–247 (2011).
Day, J. C., Hughes, D. W. & Butcher, W. R. Soil, water and crop administration options in rainfed agriculture in the Sahel: an financial evaluation. Agric. Econ. 7, 267–287 (1992).
Bationo, A., Bielders, C. L., Duivenbooden, N. V., Buerkert, A. C. & Seyni, F. The Management of Nutrients and Water in the West African Semi-arid Tropics IAEA-TECDOC-1026 (IAEA, 1998).
Vanlauwe, B. A fourth precept is required to outline conservation agriculture in sub-Saharan Africa: the suitable use of fertilizer to boost crop productiveness. Field Crops Res. 155, 10–13 (2014).
Droppelmann, Okay. J., Snapp, S. S. & Waddington, S. R. Sustainable intensification choices for smallholder maize-based farming programs in sub-Saharan Africa. Food Sec. 9, 133–150 (2017).
Sileshi, G., Akinnifesi, F. Okay., Ajayi, O. C. & Place, F. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 307, 1–19 (2008).
Google Scholar
Mapfumo, P. & Giller, Okay. E. Soil Fertility Management Strategies and Practices by Smallholder Farmers in Semi-arid Areas of Zimbabwe (ICRISAT/FAO, 2001).
Takahashi, Okay., Muraoka, R. & Otsuka, Okay. Technology adoption, impression, and extension in growing nations’ agriculture: a evaluation of the latest literature. Agric. Econ. 51, 31–45 (2020).
Ayalew, H., Chamberlin, J. & Newman, C. Site-specific Agronomic Information and Technology Adoption: A Field Experiment from Ethiopia tep0620 (Trinity College Dublin, 2020).
Netting, R. M., Stone, M. P. & Stone, G. D. Kofyar cash-cropping: selection and change in indigenous agricultural growth. Human Ecology 17, 299–319 (1989).
Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change underneath Population Pressure (Transaction, 2011).
Ollenburger, M., Crane, T., Descheemaeker, Okay. & Giller, Okay. E. Are farmers looking for an African inexperienced revolution? Exploring the answer area for agricultural intensification in Southern Mali. Exp. Agric. 55, 288–310 (2019).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R information 2, 18–22 (2002).
Hijmans, R. J. terra: spatial information evaluation. R package deal model 0.7-11 (2020); https://CRAN.R-project.org/package=Rwofost
Leenaars, J. G. B. et al. Gridded Functional Soil Information (Dataset RZ-PAWHC SSA v.1.0) (2015).
Hengl, T. et al. Soil nutrient maps of sub-Saharan Africa: evaluation of soil nutrient content material at 250 m spatial decision utilizing machine studying. Nutr. Cycling Agroecosyst. 109, 77–102 (2017).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial decision local weather surfaces for international land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Harris, I. P. D. J., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated excessive‐decision grids of month-to-month climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
de Wit, A. et al. 25 years of the WOFOST cropping programs mannequin. Agric. Syst. 168, 154–167 (2019).
Hijmans, R. J. Rwofost: WOFOST crop development simulation mannequin. R package deal model 0.7-0 (2020); https://CRAN.R-project.org/package=Rwofost
Van Ittersum, M. Okay. & Rabbinge, R. Concepts in production ecology for evaluation and quantification of agricultural enter–output combos. Field Crops Res. 52, 197–208 (1997).
Janssen, B. H. et al. A system for quantitative analysis of the fertility of tropical soils (QUEFTS). Geoderma 46, 299–318 (1990).
Google Scholar
Sattari, S. Z., Van Ittersum, M. Okay., Bouwman, A. F., Smit, A. L. & Janssen, B. H. Crop yield response to soil fertility and N, P, Okay inputs in totally different environments: testing and enhancing the QUEFTS mannequin. Field Crops Res. 157, 35–46 (2014).
Hijmans, R. J. Rquefts: quantitative analysis of the native fertility of tropical soils. R package deal model 1.1-1 (2020); https://CRAN.R-project.org/package=Rquefts
Nelson, A. et al. A collection of worldwide accessibility indicators. Sci. Data 6, 266 (2019).
Google Scholar
LandScan High Resolution Global Population Data Set (LandScan, 2016); https://landscan.ornl.gov/
Xiong, J. et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001 [Dataset] (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001
[ad_2]