Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).
Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).
Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).
Chen, Okay. & Arnold, F. H. Engineering new catalytic actions in enzymes. Nat. Catal. 3, 203–213 (2020).
Esvelt, Okay. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).
Google Scholar
Miller, S. M., Wang, T. & Liu, D. R. Phage-assisted continuous and non-continuous evolution. Nat. Protoc. 15, 4101–4127 (2020).
Morrison, M. S., Podracky, C. J. & Liu, D. R. The growing toolkit of continuous directed evolution. Nat. Chem. Biol. 16, 610–619 (2020).
Hendel, S. J. & Shoulders, M. D. Directed evolution in mammalian cells. Nat. Methods. 18, 346–357 (2021).
Fabret, C. et al. Efficient gene focused random mutagenesis in genetically steady Escherichia coli strains. Nucleic Acids Res. 28, 95 (2000).
Google Scholar
Camps, M., Naukkarinen, J., Johnson, B. P. & Loeb, L. A. Targeted gene evolution in Escherichia coli utilizing a extremely error-prone DNA polymerase I. Proc. Natl Acad. Sci. USA 100, 9727–9732 (2003).
Google Scholar
Finney-Manchester, S. P. & Maheshri, N. Harnessing mutagenic homologous recombination for focused mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, 1–10 (2013).
Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun. 7, 13051 (2016).
Google Scholar
Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014). This work establishes an orthogonal DNA replication system in yeast that permits the elevation of mutation charges on an orthogonal plasmid replicated by a cognate orthogonal error-prone DNAP.
Hess, G. T. et al. Directed evolution utilizing dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods. 13, 1036–1042 (2016). This work is an early demonstration that attachment of mutagenic equipment, on this case a cytidine deaminase, to dCas9 is an efficient technique for focusing on hypermutation to desired loci in mammalian cells.
Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) permits environment friendly genomic diversification in mammalian cells. Nat. Methods. 13, 1029–1035 (2016).
Moore, C. L., Papa, L. J. & Shoulders, M. D. A processive protein chimera introduces mutations throughout outlined DNA areas in vivo. J. Am. Chem. Soc. 140, 11560–11564 (2018). This work establishes the MutaT7 technique involving the fusion of a DNA-damaging cytidine deaminase to a processive RNA polymerase to attain in vivo focused hypermutation of multi-kilobyte DNA sequences, thereby enabling continuous evolution of GOIs inside E. coli.
Halperin, S. O. et al. CRISPR-guided DNA polymerases allow diversification of all nucleotides in a tunable window. Nature. 560, 248–252 (2018). This work demonstrates that fusion of an error-prone DNAP to nCas9 achieves hypermutation at desired gRNA-targeted loci in E. coli to help continuous in vivo diversification and evolution of GOIs.
Google Scholar
Ravikumar, A., Arzumanyan, G. A., Obadi, M. Okay. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation charges above genomic error thresholds. Cell. 175, 1946–1957.e13 (2018). This work establishes a extremely error-prone orthogonal DNA replication system that durably hypermutates an orthogonal plasmid at mutation charges 100,000-fold greater than the genome in yeast, thereby supporting the continuous evolution of GOIs for prolonged intervals of time and at scale, as demonstrated by the replicate evolution of drug resistance by a malarial drug goal.
Yi, X., Khey, J., Kazlauskas, R. J. & Travisano, M. Plasmid hypermutation utilizing a focused synthetic DNA replisome. Sci. Adv. 7, eabg871 (2021).
Yi, X., Kazlauskas, R. & Travisano, M. Evolutionary innovation utilizing EDGE, a system for localized elevated mutagenesis. PLoS ONE 15, 1–18 (2020).
Jensen, E. D. et al. An artificial RNA-mediated evolution system in yeast. Nucleic Acids Res. 49, 1–12 (2021).
Chen, H. et al. Efficient, continuous mutagenesis in human cells utilizing a pseudo-random DNA editor. Nat. Biotechnol. 38, 165–168 (2020). This work presents an extension of the MutaT7 technique to mammalian cells, enabling the continuous focused hypermutation and evolution of GOIs inside human cells.
Álvarez, B., Mencía, M., de Lorenzo, V. & Fernández, L. Á. In vivo diversification of goal genomic websites utilizing processive base deaminase fusions blocked by dCas9. Nat. Commun. 11, 6436 (2020). This work expands the MutaT7 know-how by the fusion of latest base deaminases to T7RNAP (thereby reaching focused hypermutation with expanded mutational parameters in E. coli) and the addition of dCas9 to terminate polymerization by T7RNAP (thereby offering extra management over the window of hypermutation).
Google Scholar
Park, H. & Kim, S. Gene-specific mutagenesis permits speedy continuous evolution of enzymes in vivo. Nucleic Acids Res. 49, e32–e32 (2021). This work presents an enlargement of MutaT7 know-how to attain exceptionally excessive charges of hypermutation in E. coli.
Cravens, A., Jamil, O. Okay., Kong, D., Sockolosky, J. T. & Smolke, C. D. Polymerase-guided base modifying permits in vivo mutagenesis and speedy protein engineering. Nat. Commun. 12, 1579 (2021). This work extends the MutaT7 technique to yeast, enabling the continuous focused hypermutation and in vivo continuous evolution of GOIs in S. cerevisiae.
Google Scholar
Butt, H., Ramirez, J. L. M. & Mahfouz, M. Synthetic evolution of herbicide resistance utilizing a T7 RNAP-based random DNA base editor. Preprint at bioRxiv https://doi.org/10.1101/2021.11.30.470689 (2021).
Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821 (2012).
Google Scholar
Tou, C. J., Schaffer, D. V. & Dueber, J. E. Targeted diversification within the S. cerevisiae genome with CRISPR-guided DNA polymerase i. ACS Synth. Biol. 9, 1911–1916 (2020).
Khanal, A., McLoughlin, S. Y., Kershner, J. P. & Copley, S. D. Differential results of a mutation on the traditional and promiscuous actions of orthologs: implications for pure and directed evolution. Mol. Biol. Evol. 32, 100–108 (2015).
Zheng, J., Payne, J. L. & Wagner, A. Cryptic genetic variation accelerates evolution by opening entry to various adaptive peaks. Science 365, 347–353 (2019).
Google Scholar
Gupta, R. D. & Tawfik, D. S. Directed enzyme evolution through small and efficient impartial drift libraries. Nat. Methods. 5, 939–942 (2008).
Salverda, M. L. M. et al. Initial mutations direct different pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).
Baier, F. et al. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. eLife 8, 1–20 (2019).
Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature. 500, 571–574 (2013).
Google Scholar
Eigen, M., McCaskill, J. & Schuster, P. Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988).
Rix, G. & Liu, C. C. Systems for in vivo hypermutation: a quest for scale and depth in directed evolution. Curr. Opin. Chem. Biol. 64, 20–26 (2021). This work outlines the worth of in vivo continuous evolution programs in accessing new classes of directed evolution experiments characterised by depth and scale.
Gunge, N. & Sakaguchi, Okay. Intergeneric switch of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J. Bacteriol. 147, 155–160 (1981).
Arzumanyan, G. A., Gabriel, Okay. N., Ravikumar, A., Javanpour, A. A. & Liu, C. C. Mutually orthogonal DNA replication programs in vivo. ACS Synth. Biol. 7, 1722–1729 (2018).
Zhong, Z., Ravikumar, A. & Liu, C. C. Tunable expression programs for orthogonal DNA replication. ACS Synth. Biol. 7, 2930–2934 (2018).
Kämper, J., Esser, Okay., Gunge, N. & Meinhardt, F. Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr. Genet. 19, 109–118 (1991).
Javanpour, A. A. & Liu, C. C. Genetic compatibility and extensibility of orthogonal replication. ACS Synth. Biol. 8, 1249–1256 (2019).
Chamberlin, M., Mcgrath, J. & Waskell, L. New RNA polymerase from Escherichia coli contaminated with bacteriophage T7. Nature. 228, 227–231 (1970).
Google Scholar
Tabor, S. & Richardson, C. C. A bacteriophage T7 RNA polymerase/promoter system for managed unique expression of particular genes. Proc. Natl Acad. Sci. USA 82, 1074–1078 (1985).
Google Scholar
McAllister, W. T., Morris, C., Rosenberg, A. H. & Studier, F. W. Utilization of bacteriophage T7 late promoters in recombinant plasmids throughout an infection. J. Mol. Biol. 153, 527–544 (1981).
Thiel, V., Herold, J., Schelle, B. & Siddell, S. G. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J. Gen. Virol. 82, 1273–1281 (2001).
Steitz, T. A. The structural modifications of T7 RNA polymerase from transcription initiation to elongation. Curr. Opin. Struct. Biol. 19, 683–690 (2009).
Conticello, S. G. The AID/APOBEC household of nucleic acid mutators. Genome Biol. 9, 229 (2008).
Gerber, A. P. & Keller, W. An adenosine deaminase that generates inosine on the wobble place of tRNAs. Science 286, 1146–1149 (1999).
Harris, R. S., Petersen-Mahrt, S. Okay. & Neuberger, M. S. RNA modifying enzyme APOBEC1 and a few of its homologs can act as DNA mutators. Mol. Cell. 10, 1247–1253 (2002).
Navaratnam, N. & Sarwar, R. An overview of cytidine deaminases. Int. J. Hematol. 83, 195–200 (2006).
Cacciamani, T. et al. Purification of human cytidine deaminase: molecular and enzymatic characterization and inhibition by artificial pyrimidine analogs. Arch. Biochem. Biophys. 290, 285–292 (1991).
Chung, S. J., Fromme, J. C. & Verdine, G. L. Structure of human cytidine deaminase certain to a potent inhibitor. J. Med. Chem. 48, 658–660 (2005).
Lada, A. G. et al. Mutator results and mutation signatures of modifying deaminases produced in micro organism and yeast. Biochem 76, 131–146 (2011).
Vik, E. S. et al. Endonuclease V cleaves at inosines in RNA. Nat. Commun. 4, 2271 (2013).
Google Scholar
Krokan, H. E., Drabløs, F. & Slupphaug, G. Uracil in DNA — incidence, penalties and restore. Oncogene 21, 8935–8948 (2002).
Alseth, I., Dalhus, B. & Bjørås, M. Inosine in DNA and RNA. Curr. Opin. Genet. Dev. 26, 116–123 (2014).
Hirano, Okay. I., Min, J., Funahashi, T. & Davidson, N. O. Cloning and characterization of the rat apobec-1 gene: a comparative evaluation of gene construction and promoter utilization in rat and mouse. J. Lipid Res. 38, 1103–1119 (1997).
MacGinnitie, A. J., Anant, S. & Davidson, N. O. Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA modifying enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA modifying exercise. J. Biol. Chem. 270, 14768–14775 (1995).
Scott, J., Navaratnam, N., Bhattacharya, S. & Morrison, J. R. The apolipoprotein B messenger RNA modifying enzyme. Curr. Opin. Lipidol. 5, 87–93 (1994).
Arakawa, H., HauschiLd, J. & Buerstedde, J. M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).
Google Scholar
Muramatsu, M. et al. Class swap recombination and hypermutation require activation-induced cytidine deaminase (AID), a possible RNA modifying enzyme. Cell. 102, 553–563 (2000).
Rogozin, I. B. et al. Evolution and diversification of lamprey antigen receptors: proof for involvement of an AID–APOBEC household cytosine deaminase. Nat. Immunol. 8, 647–656 (2007).
Kim, J. et al. Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. 45, 6407–6416 (2006).
Gaudelli, N. M. et al. Programmable base modifying of T to G C in genomic DNA with out DNA cleavage. Nature. 551, 464–471 (2017).
Google Scholar
Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas area compatibility and exercise. Nat. Biotechnol. 38, 883–891 (2020).
Martínez-Salas, E. Internal ribosome entry website biology and its use in expression vectors. Curr. Opin. Biotechnol. 10, 458–464 (1999).
Wang, Z. & Mosbaugh, D. W. Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and results of expression of the inhibitor gene in Escherichia coli. J. Bacteriol. 170, 1082–1091 (1988).
Wang, Z. & Mosbaugh, D. W. Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein particular for uracil-DNA glycosylase. J. Biol. Chem. 264, 1163–1171 (1989).
Karran, P., Cone, R. & Friedberg, E. C. Specificity of the bacteriophage PBS2 induced inhibitor of uracil-DNA glycosylase. Biochemistry. 20, 6092–6096 (1981).
Bennett, S. E. & Mosbaugh, D. W. Characterization of the Escherichia coli uracil-DNA glycosylase·inhibitor protein advanced. J. Biol. Chem. 267, 22512–22521 (1992).
Bennett, S. E., Schimerlik, M. I. & Mosbaugh, D. W. Kinetics of the uracil-DNA glycosylase/inhibitor protein affiliation. Ung interplay with Ugi, nucleic acids, and uracil compounds. J. Biol. Chem. 268, 26879–26885 (1993).
Wang, Y. et al. A novel technique to engineer DNA polymerases for enhanced processivity and improved efficiency in vitro. Nucleic Acids Res. 32, 1197–1207 (2004).
Tizei, P. A. G., Csibra, E., Torres, L. & Pinheiro, V. B. Selection platforms for directed evolution in artificial biology. Biochem. Soc. Trans. 44, 1165–1175 (2016).
Wang, Y. et al. Directed evolution: methodologies and functions. Chem. Rev. 121, 12384–12444 (2021).
Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, Okay. M. & Liu, D. R. Experimental interrogation of the trail dependence and stochasticity of protein evolution utilizing phage-assisted continuous evolution. Proc. Natl Acad. Sci. USA 110, 9007–9012 (2013).
Google Scholar
Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science. 292, 498–500 (2001).
Google Scholar
Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative choice and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).
Blum, T. R. et al. Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. Science. 371, 803–810 (2021).
Google Scholar
Szendro, I. G., Franke, J., De Visser, J. A. G. M. & Krug, J. Predictability of evolution relies upon nonmonotonically on inhabitants dimension. Proc. Natl Acad. Sci. USA 110, 571–576 (2013).
Google Scholar
Salverda, M. L. M., Koomen, J., Koopmanschap, B., Zwart, M. P. & de Visser, J. A. G. M. Adaptive advantages from small mutation provides in an antibiotic resistance enzyme. Proc. Natl Acad. Sci. USA 114, 12773–12778 (2017).
Steinberg, B. & Ostermeier, M. Environmental modifications bridge evolutionary valleys. Sci. Adv. 2, e1500921 (2016).
Google Scholar
Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, automated management of circumstances for high-throughput development of yeast and micro organism with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018).
Zhong, Z. et al. Automated continuous evolution of proteins in vivo. ACS Synth. Biol. 9, 1270–1276 (2020).
DeBenedictis, E. A. et al. Systematic molecular evolution permits sturdy biomolecule discovery. Nat. Methods. 19, 55–64 (2022).
Marks, D. S. et al. Protein 3D construction computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).
Google Scholar
Stiffler, M. A. et al. Protein construction from experimental evolution. Cell Syst. 10, 15–24.e5 (2020).
Jumper, J. et al. Highly correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Yang, Okay. Okay., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods. 16, 687–694 (2019).
Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).
Carr, I. M. et al. Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinformatics 25, 3244–3250 (2009).
Shen, M. W., Zhao, Okay. T. & Liu, D. R. Reconstruction of evolving gene variants and health from quick sequencing reads. Nat. Chem. Biol. 17, 1188–1198 (2021).
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing applied sciences. Nat. Rev. Genet. 17, 333–351 (2016).
Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing information evaluation. Genome Biol. 21, 1–16 (2020).
Ravi, R. Okay., Walton, Okay. & Khosroheidari, M. in Disease Gene Identification: Methods and Protocols (ed. DiStefano, J. Okay.) 223–232 (Springer, 2018).
Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing devices. NAR. Genomics Bioinforma. 3, 1–9 (2021).
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, Okay. F. Nanopore sequencing know-how, bioinformatics and functions. Nat. Biotechnol. 39, 1348–1365 (2021).
Karst, S. M. et al. High-accuracy long-read amplicon sequences utilizing distinctive molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods. 18, 165–169 (2021).
Wenger, A. M. et al. Accurate round consensus long-read sequencing improves variant detection and meeting of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
Zurek, P. J., Knyphausen, P., Neufeld, Okay., Pushpanath, A. & Hollfelder, F. UMI-linked consensus sequencing permits phylogenetic evaluation of directed evolution. Nat. Commun. 11, 6023 (2020).
Google Scholar
Wilson, B. D., Eisenstein, M. & Soh, H. T. High-fidelity nanopore sequencing of ultra-short DNA targets. Anal. Chem. 91, 6783–6789 (2019).
Murray, Okay. D. & Borevitz, J. O. Axe: speedy, aggressive sequence learn demultiplexing utilizing a trie. Bioinformatics 34, 3924–3925 (2018).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576 (2012).
Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing information utilizing breseq. Methods. Mol. Biol. 1151, 165–188 (2014).
Fowler, D. M. & Fields, S. Deep mutational scanning: a brand new model of protein science. Nat. Methods. 11, 801–807 (2014).
Sirawaraporn, W., Sathitkul, T., Sirawaraporn, R., Yuthavong, Y. & Santi, D. V. Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Biochemistry 94, 1124–1129 (1997).
Hankins, E. G., Warhurst, D. C. & Sibley, C. H. Novel alleles of the Plasmodium falciparum dhfr extremely proof against pyrimethamine and chlorcycloguanil, however not WR99210. Mol. Biochem. Parasitol. 117, 91–102 (2001).
Long, M. et al. Directed evolution of ornithine cyclodeaminase utilizing an EvolvR-based growth-coupling technique for environment friendly biosynthesis of l-proline. ACS Synth. Biol. 9, 1855–1863 (2020).
García-García, J. D. et al. Potential for making use of continuous directed evolution to plant enzymes: an exploratory examine. Life 10, 1–16 (2020).
García-García, J. D. et al. Using continuous directed evolution to enhance enzymes for plant functions. Plant. Physiol. 188, 971–983 (2022).
Chatterjee, A. et al. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature 478, 542–546 (2011).
Google Scholar
Joshi, J. et al. Structure and operate of aerotolerant, multiple-turnover THI4 thiazole synthases. Biochem. J. 478, 3265–3279 (2021).
Rix, G. et al. Scalable continuous evolution for the technology of various enzyme variants encompassing promiscuous actions. Nat. Commun. 11, 5644 (2020). This work demonstrates the usage of OrthoRep to evolve in a scalable method a big assortment of extremely various orthologues of an enzyme (TrpB), which was mined for promiscuous actions resulting in the biosynthesis of precious chemical substances.
Google Scholar
Dunn, M. F. Allosteric regulation of substrate channeling and catalysis within the tryptophan synthase bienzyme advanced. Arch. Biochem. Biophys. 519, 154–166 (2012).
Buller, A. R. et al. Directed evolution of the tryptophan synthase β-subunit for stand-alone operate recapitulates allosteric activation. Proc. Natl Acad. Sci. USA 112, 14599–14604 (2015).
Google Scholar
Watkins-Dulaney, E., Straathof, S. & Arnold, F. Tryptophan synthase: biocatalyst extraordinaire. ChemBioChem 22, 5–16 (2021).
Romney, D. Okay., Murciano-Calles, J., Wehrmüller, J. E. & Arnold, F. H. Unlocking reactivity of TrpB: a normal biocatalytic platform for synthesis of tryptophan analogues. J. Am. Chem. Soc. 139, 10769–10776 (2017).
Boville, C. E., Romney, D. Okay., Almhjell, P. J., Sieben, M. & Arnold, F. H. Improved synthesis of 4-cyanotryptophan and different tryptophan analogues in aqueous solvent utilizing variants of TrpB from Thermotoga maritima. J. Org. Chem. 83, 7447–7452 (2018).
Javanpour, A. A. & Liu, C. C. Evolving small-molecule biosensors with improved efficiency and reprogrammed ligand choice utilizing OrthoRep. ACS Synth. Biol. 10, 2705–2714 (2021).
Jensen, E. D. et al. Integrating continuous hypermutation with high-throughput screening for optimization of cis,cis-muconic acid manufacturing in yeast. Microb. Biotechnol. 14, 2617–2626 (2021).
Wellner, A. et al. Rapid technology of potent antibodies by autonomous hypermutation in yeast. Nat. Chem. Biol. 17, 1057–1064 (2021). This work demonstrates the usage of OrthoRep to drive the speedy evolution of customized antibodies displayed on the floor of yeast cells, together with nanomolar-affinity nanobodies that bind and neutralize SARS-CoV-2.
Pezo, V. et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 372, 520–524 (2021).
Google Scholar
Anzalone, A. V. et al. Search-and-replace genome modifying with out double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Google Scholar
Ling, X. et al. Improving the effectivity of exact genome modifying with site-specific Cas9–oligonucleotide conjugates. Sci. Adv. 6, 1–9 (2020).
Google Scholar
Wang, C. et al. Microbial single-strand annealing proteins allow CRISPR gene-editing instruments with improved knock-in efficiencies and lowered off-target results. Nucleic Acids Res. 49, 1–16 (2021).
Stevens, A. J. et al. Design of a cut up intein with distinctive protein splicing exercise. J. Am. Chem. Soc. 138, 2162–2165 (2016).
Mills, D. R., Peterson, R. L. & Spiegelman, S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).
Google Scholar
Beaudry, A. A. & Joyce, G. F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).
Google Scholar
Leman, J. Okay. et al. Macromolecular modeling and design in Rosetta: latest strategies and frameworks. Nat. Methods. 17, 665–680 (2020).
Google Scholar
Stoltenburg, R., Reinemann, C. & Strehlitz, B. SELEX — a (r)evolutionary technique to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403 (2007).
Torrisi, M., Pollastri, G. & Le, Q. Deep studying strategies in protein construction prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).
Rollins, N. J. et al. Inferring protein 3D construction from deep mutation scans. Nat. Genet. 51, 1170–1176 (2019).
Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).
Google Scholar
Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).
Google Scholar
Basanta, B. et al. An enumerative algorithm for de novo design of proteins with various pocket constructions. Proc. Natl Acad. Sci. USA 117, 22135–22145 (2020).
Anishchenko, I. et al. De novo protein design by deep community hallucination. Nature 600, 547–552 (2021).
Google Scholar
Hadadi, N., MohammadiPeyhani, H., Miskovic, L., Seijo, M. & Hatzimanikatis, V. Enzyme annotation for orphan and novel reactions utilizing data of substrate reactive websites. Proc. Natl Acad. Sci. USA 116, 7298–7307 (2019).
Gumulya, Y. et al. Engineering extremely purposeful thermostable proteins utilizing ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).
Xie, V. C., Pu, J., Metzger, B. P. H., Thornton, J. W. & Dickinson, B. C. Contingency and probability erase necessity within the experimental evolution of ancestral proteins. eLife 10, 1–87 (2021).
Kaltenbach, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor article. Nat. Chem. Biol. 14, 548–555 (2018).
Biebricher, C. Okay. & Eigen, M. The error threshold. Virus Res. 107, 117–127 (2005).
Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a cut up RNA polymerase as a flexible biosensor platform. Nat. Chem. Biol. 13, 432–438 (2017).
Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat. Commun. 8, 956 (2017).
Google Scholar
Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).
Google Scholar
Inamoto, I., Sheoran, I., Popa, S. C., Hussain, M. & Shin, J. A. Combining rational design and continuous evolution on minimalist proteins that concentrate on the E-box DNA website. ACS Chem. Biol. 16, 35–44 (2021).
Wang, T., Badran, A. H., Huang, T. P. & Liu, D. R. Continuous directed evolution of proteins with improved soluble expression. Nat. Chem. Biol. 14, 972–980 (2018).
Thuronyi, B. W. et al. Continuous evolution of base editors with expanded goal compatibility and improved exercise. Nat. Biotechnol. 37, 1070–1079 (2019).
Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).
English, J. G. et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178, 748–761.e17 (2019).