ADVERTISEMENT

Lipid biomarkers: molecular tools for illuminating the history of microbial life

548
SHARES
2.5k
VIEWS


  • 1.

    Berner, E. Okay. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).

  • 2.

    Cavosie, A. J., Valley, J. W. & Wilde, S. A. The oldest terrestrial mineral report: a evaluation of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. Dev. Precambrian Geol. 15, 91–111 (2007).

    Google Scholar 

  • 3.

    Betts, H. C. et al. Integrated genomic and fossil proof illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    McNaughton, N. J., Compston, W. & Barley, M. E. Constraints on the age of the Warrawoona Group, jap Pilbara Block, Western Australia. Precambrian Res. 60, 69–98 (1993).

    CAS 

    Google Scholar 

  • 5.

    Sugitani, Okay., Mimura, Okay., Nagaoka, T., Lepot, Okay. & Takeuchi, M. Microfossil assemblage from the 3400 Ma strelley pool formation in the Pilbara Craton, Western Australia: outcomes type a brand new locality. Precambrian Res. 226, 59–74 (2013).

    CAS 

    Google Scholar 

  • 6.

    Sugitani, Okay. et al. Early evolution of giant micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13, 507–521 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Alleon, J. et al. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018).

    Google Scholar 

  • 8.

    Allwood, A. C. et al. Controls on improvement and variety of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean period of Australia. Nature 441, 714–718 (2006). This paper particulars connections between the morphology of some of the oldest stromatolites and options of their coastal marine setting. It is essential to illustrating how advanced microbial communities should have existed on the Earth no less than 3.45 billion years in the past.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Hofmann, H., Grey, Okay., Hickman, A. & Thorpe, R. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999).

    Google Scholar 

  • 11.

    Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle throughout the Precambrian. Rev. Mineral. Geochem. 43, 555–578 (2001).

    CAS 

    Google Scholar 

  • 12.

    Buick, R. et al. Record of emergent continental crust 3.5 billion years in the past in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    CAS 

    Google Scholar 

  • 13.

    Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope evaluation of ca. 3.5 Ga dresser formation: new proof for microbial sulfate discount in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    CAS 

    Google Scholar 

  • 14.

    Bontognali, T. R. R. et al. Sulfur isotopes of natural matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a report of the evolution of ambiance chemistry? Precambrian Res. 96, 63–82 (1999).

    CAS 

    Google Scholar 

  • 16.

    Morgan, G. J. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J. Hist. Biol. 31, 155–178 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Zuckerkandl, E. & Pauling, L. Molecules as paperwork of evolutionary history. J. Theor. Biol. 8, 357–366 (1965). This basic paper informs us how the sequences of present-day macromolecules encode a history of their origin and evolution.

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins 97–166 (Elsevier, 1965).

  • 19.

    Peterson, Okay. J., Summons, R. E. & Donoghue, P. C. J. Molecular palaeobiology. Palaeontology 50, 775–809 (2007).

    Google Scholar 

  • 20.

    Gaucher, E. A. Ancestral sequence reconstruction as a device to grasp pure history and information artificial biology: realizing and lengthening the imaginative and prescient of Zuckerkandl and Pauling. Liberles [83] 31, 20–33 (2007).

    Google Scholar 

  • 21.

    Kacar, B., Hanson-Smith, V., Adam, Z. R. & Boekelheide, N. Constraining the timing of the Great Oxidation Event inside the Rubisco phylogenetic tree. Geobiology 15, 628–640 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Brocks, J. J. et al. Biomarker proof for inexperienced and purple sulphur micro organism in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    McKenna, E. J. & Kallio, R. E. Microbial metabolism of the isoprenoid alkane pristane. Proc. Natl Acad. Sci. USA 68, 1552 (1971).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Waples, D. W., Haug, P. & Welte, D. H. Occurrence of an everyday C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline setting. Geochim. Cosmochim. Acta 38, 381–387 (1974).

    CAS 

    Google Scholar 

  • 25.

    Knoll, A. H., Summons, R. E., Waldbauer, J. R. & Zumberge, J. in The Evolution of Primary Producers in the Sea (eds Falkwoski, P. & Knoll, A.H.) 133–163 (Elsevier, 2007).

  • 26.

    Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Sinninghe Damsté, J. S. & Köster, J. A euxinic southern North Atlantic Ocean throughout the Cenomanian/Turonian oceanic anoxic occasion. Earth Planet. Sci. Lett. 158, 165–173 (1998).

    Google Scholar 

  • 28.

    Kuypers, M. M. M. et al. Massive growth of marine archaea throughout a mid-cretaceous oceanic anoxic occasion. Science 293, 92–95 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a brand new device for climatic evaluation. Nature 320, 129–133 (1986). This examine is the first detailing how fossilized natural molecules can function SST proxies.

    CAS 

    Google Scholar 

  • 30.

    Schouten, S. et al. Extremely excessive sea-surface temperatures at low latitudes throughout the Middle Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069–1072 (2003).

    CAS 

    Google Scholar 

  • 31.

    Bobrovskiy, I., Hope, J. M., Krasnova, A., Ivantsov, A. & Brocks, J. J. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat. Ecol. Evol. 2, 437 (2018).

    PubMed 

    Google Scholar 

  • 32.

    Evitt, W. R. A dialogue and proposals regarding fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proc. Natl Acad. Sci. USA 49, 298 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Treibs, A. Chlorophyll- und Häminderivate in organischen Mineralstoffen [German]. Angew. Chem. 49, 682–686 (1936).

    CAS 

    Google Scholar 

  • 34.

    Hills, I. R. & Whitehead, E. V. Triterpanes in optically lively petroleum distillates. Nature 209, 977–979 (1966).

    CAS 

    Google Scholar 

  • 35.

    Blumer, M. Pigments of a fossil echinoderm. Nature 188, 1100–1101 (1960).

    CAS 

    Google Scholar 

  • 36.

    Ourisson, G., Albrecht, P. & Rohmer, M. The hopanoids. Palaeochemistry and biochemistry of a bunch of pure merchandise. Pure Appl. Chem. 51, 709–729 (1979). This evaluation particulars how a selected group of bacterial membrane lipids gave rise to a ubiquitous and considerable class of chemical fossils.

    CAS 

    Google Scholar 

  • 37.

    Rohmer, M. & Ourisson, G. Dérivés du bactériohopane: variations structurales et répartition [French]. Tetrahedron Lett. 17, 3637–3640 (1976).

    Google Scholar 

  • 38.

    Yon, D. A., Maxwell, J. R. & Ryback, G. 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary organic marker compound. Tetrahedron Lett. 23, 2143–2146 (1982).

    CAS 

    Google Scholar 

  • 39.

    Barrick, R. C., Hedges, J. I. & Peterson, M. L. Hydrocarbon geochemistry of the Puget Sound area — I. Sedimentary acyclic hydrocarbons. Geochim. Cosmochim. Acta 44, 1349–1362 (1980).

    CAS 

    Google Scholar 

  • 40.

    Requejo, A. G. & Quinn, J. G. Geochemistry of C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary. Geochim. Cosmochim. Acta 47, 1075–1090 (1983).

    CAS 

    Google Scholar 

  • 41.

    Dunlop, R. W. & Jefferies, P. R. Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org. Geochem. 8, 313–320 (1985).

    CAS 

    Google Scholar 

  • 42.

    Volkman, J. Okay., Barrett, S. M. & Dunstan, G. A. C25 and C30 extremely branched isoprenoid alkenes in laboratory cultures of two marine diatoms.Org. Geochem. 21, 407–414 (1994).

    CAS 

    Google Scholar 

  • 43.

    Sinninghe Damste, J. S. et al. The rise of the rhizosolenid diatoms. Science 304, 584–587 (2004).

    CAS 

    Google Scholar 

  • 44.

    Rowland, S. J. et al. Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58, 717–728 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Blumer, M., Guillard, R. R. L. & Chase, T. Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971).

    CAS 

    Google Scholar 

  • 46.

    Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpanes in prokaryotes. J. Gen. Microbiol. 130, 1137–1150 (1984).

    CAS 

    Google Scholar 

  • 48.

    Volkman, J. Okay. et al. Microalgal biomarkers: a evaluation of latest analysis developments. Org. Geochem. 29, 1163–1179 (1998). This paper evaluations the laborious however important work of surveying biomarkers throughout dwelling organisms. The distribution of biomarkers in trendy algae gives a stable basis on which molecular fossils have traditionally been interpreted.

    CAS 

    Google Scholar 

  • 49.

    Sturt, H. F., Summons, R. E., Smith, Okay., Elvert, M. & Hinrichs, Okay.-U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry — new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass. Spectrom. 18, 617–628 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    White, D. C. & Ringelberg, D. B. in Techniques in Microbial Ecology. (eds Burlage, R. S. et al.) 255–272 (Oxford Univ. Press, 1998).

  • 51.

    Vestal, J. R. & White, D. C. Lipid evaluation in microbial ecology. Bioscience 39, 535–541 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Lipp, J. S. & Hinrichs, Okay.-U. Structural range and destiny of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816–6833 (2009).

    CAS 

    Google Scholar 

  • 53.

    Rossel, P. E. et al. Intact polar lipids of anaerobic methanotrophic archaea and related micro organism. Org. Geochem. 39, 992–999 (2008).

    CAS 

    Google Scholar 

  • 54.

    Taylor, J. & Parkes, R. J. The mobile fatty acids of the sulphate-reducing micro organism, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 3303–3309 (1983).

    CAS 

    Google Scholar 

  • 55.

    Brocks, J. J. & Pearson, A. Building the biomarker tree of life. Rev. Mineral. Geochem. 59, 233–258 (2005).

    CAS 

    Google Scholar 

  • 56.

    Volkman, J. Okay. Sterols and different triterpenoids: supply specificity and evolution of biosynthetic pathways. Org. Geochem. 36, 139–159 (2005).

    CAS 

    Google Scholar 

  • 57.

    Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The natural geochemistry of glycerol dialkyl glycerol tetraether lipids: a evaluation. Org. Geochem. 54, 19–61 (2013).

    CAS 

    Google Scholar 

  • 58.

    Peters, Okay. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide 2nd edn (Cambridge Univ. Press, 2005).

  • 59.

    Pearson, A. 12.11 Lipidomics for geochemistry. Treatise Geochem. 12, 291–336 (2014).

    Google Scholar 

  • 60.

    Newman, D. Okay., Neubauer, C., Ricci, J. N., Wu, C.-H. & Pearson, A. Cellular and molecular organic approaches to deciphering historical biomarkers. Annu. Rev. Earth Planet. Sci. 44, 493–522 (2016). This paper particulars our altering understanding on the position of 2-methylhopanoids in micro organism, and the way this transformation impacts our interpretation of the associated molecular fossil. It gives a case examine on the significance of understanding what a biomarker biologically does in a microbe, not simply its presence or absence.

    CAS 

    Google Scholar 

  • 61.

    Ochs, D., Kaletta, C., Entian, Okay. D., Beck-Sickinger, A. & Poralla, Okay. Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. J. Bacteriol. 174, 298–302 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Schmerk, C. L. et al. Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers features for conserved proteins in hopanoid-producing micro organism. Environ. Microbiol. 17, 735–750 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Welander, P. V. et al. Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology 10, 163–177 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W. & Higgins, M. B. Novel hopanoid cyclases from the setting. Environ. Microbiol. 9, 2175–2188 (2007). This paper is the first instance of utilizing a biomarker biosynthesis gene, the squalene–hopene cyclase gene needed for hopanoid manufacturing, to reveal the potential range of biomarker producers in environmental metagenomic knowledge units.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Villanueva, L., Rijpstra, W. I. C., Schouten, S. & Damsté, J. S. S. Genetic biomarkers of the sterol–biosynthetic pathway in microalgae. Environ. Microbiol. Rep. 6, 35–44 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Villanueva, L., Schouten, S. & Sinninghe Damsté, J. S. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ. Microbiol. 17, 3527–3539 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Banta, A. B., Wei, J. H. & Welander, P. V. A definite pathway for tetrahymanol synthesis in micro organism. Proc. Natl Acad. Sci. USA 112, 13478–13483 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Benson, D. A. et al. GenFinancial institution. Nucleic Acids Res. 41, D36–D42 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Eglinton, G. & Calvin, M. Chemical fossils. Sci. Am. 216, 32–43 (1967).

    CAS 

    Google Scholar 

  • 70.

    Jensen, S. V. L. Bacterial carotenoids. Acta Chem. Scand. 19, 1025–30 (1965).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Jensen, S. V. L. Bacterial carotenoids XXII. Acta Chem. Scand. 21, 2578–80 (1967).

    PubMed 

    Google Scholar 

  • 72.

    Summons, R. E. & Powell, T. G. Chlorobiaceae in Paleozoic seas revealed by organic markers, isotopes and geology. Nature 319, 763–765 (1986).

    CAS 

    Google Scholar 

  • 73.

    Abella, C., Montesinos, E. & Guerrero, R. in Shallow Lakes Contributions to Their Limnology 173–181 (Springer, 1980).

  • 74.

    French, Okay. L., Rocher, D., Zumberge, J. E. & Summons, R. E. Assessing the distribution of sedimentary C40 carotenoids via time. Geobiology 13, 139–151 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Sinninghe Damsté, J. S. & Koopmans, M. P. The destiny of carotenoids in sediments: an outline. Pure Appl. Chem. 69, 2067–2074 (1997).

    Google Scholar 

  • 76.

    Frigaard, N.-U., Maresca, J. A., Yunker, C. E., Jones, A. D. & Bryant, D. A. Genetic manipulation of carotenoid biosynthesis in the inexperienced sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186, 5210–5220 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Maresca, J., Graham, J. & Bryant, D. The biochemical foundation for structural range in the carotenoids of chlorophototrophic micro organism. Photosynthesis Res. 97, 121–140 (2008).

    CAS 

    Google Scholar 

  • 78.

    Maresca, J. A., Romberger, S. P. & Bryant, D. A. Isorenieratene biosynthesis in inexperienced sulfur micro organism requires the cooperative actions of two carotenoid cyclases. J. Bacteriol. 190, 6384–6391 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Vogl, Okay. & Bryant, D. A. Biosynthesis of the biomarker okenone: χ-ring formation. Geobiology 10, 205–215 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Krügel, H., Krubasik, P., Weber, Okay., Saluz, H. P. & Sandmann, G. Functional evaluation of genes from Streptomyces griseus concerned in the synthesis of isorenieratene, a carotenoid with fragrant finish teams, revealed a novel kind of carotenoid desaturase. Biochim. Biophys. Acta 1439, 57–64 (1999).

    PubMed 

    Google Scholar 

  • 81.

    Krubasik, P. & Sandmann, G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes concerned in the synthesis of fragrant carotenoids. Mol. Gen. Genet. 263, 423–432 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Graham, J. E., Lecomte, J. T. J. & Bryant, D. A. Synechoxanthin, an fragrant C40 xanthophyll that could be a main carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. J. Nat. Products 71, 1647–1650 (2008).

    CAS 

    Google Scholar 

  • 83.

    Graham, J. E. & Bryant, D. A. The biosynthetic pathway for synechoxanthin, an fragrant carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. pressure PCC 7002. J. Bacteriol. 190, 7966–7974 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Koopmans, M. P., Schouten, S., Kohnen, M. E. L. & Damsté, J. S. S. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60, 4873–4876 (1996).

    CAS 

    Google Scholar 

  • 85.

    Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur micro organism (Chromatiaceae), and different new carotenoid derivatives from the 1640 Ma Barney Creek formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).

    CAS 

    Google Scholar 

  • 86.

    Yamaguchi, M. On carotenoids of a sponge “Reniera japonica”. Bull. Chem. Soc. Jpn. 30, 111–114 (1957).

    CAS 

    Google Scholar 

  • 87.

    Yamaguchi, M. Renieratene, a brand new carotenoid containing benzene rings, remoted from a sea sponge. Bull. Chem. Soc. Jpn. 31, 739–742 (1958).

    CAS 

    Google Scholar 

  • 88.

    Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    French, Okay. L., Birdwell, J. E. & Berg, V. Biomarker similarities between the saline lacustrine eocene inexperienced river and the paleoproterozoic Barney Creek formations. Geochim. Cosmochim. Acta 274, 228–245 (2020).

    CAS 

    Google Scholar 

  • 90.

    Cui, X. et al. Niche growth for phototrophic sulfur micro organism at the Proterozoic–Phanerozoic transition. Proc. Natl Acad. Sci. USA 117, 17599–17606 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Koopmans, M. P., De Leeuw, J. W. & Sinninghe Damsté, J. S. Novel cyclised and aromatised diagenetic merchandise of β-carotene in the Green River Shale. Org. Geochem. 26, 451–466 (1997).

    CAS 

    Google Scholar 

  • 92.

    Behrens, A., Schaeffer, P., Bernasconi, S. & Albrecht, P. Mono- and bicyclic squalene derivatives as potential proxies for anaerobic photosynthesis in lacustrine sulfur-rich sediments. Geochim. Cosmochim. Acta 64, 3327–3336 (2000).

    CAS 

    Google Scholar 

  • 93.

    Schaeffer, P., Adam, P., Wehrung, P. & Albrecht, P. Novel fragrant carotenoid derivatives from sulfur photosynthetic micro organism in sediments. Tetrahedron Lett. 38, 8413–8416 (1997).

    CAS 

    Google Scholar 

  • 94.

    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578 (2017). This examine highlights how particular chemical modifications in lipid constructions, on this case methylation of sterol molecules, could be informative and can be utilized to trace the emergence of particular microbial teams in the geologic report.

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Javaux, E. J. & Knoll, A. H. Micropaleontology of the decrease Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017).

    Google Scholar 

  • 96.

    Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in numerous micro organism. Front. Microbiol. 7, 990 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its influence on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021). This latest examine makes use of a phylogenetic method to evaluate the evolutionary history of sterol biosynthesis and the potential influence of bacterial sterol biosynthesis on the rise of eukaryotes.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Holland, H. D. The oxygenation of the ambiance and oceans. Philos. Trans. R. Soc. B Biol. Sci. 361, 903–915 (2006).

    CAS 

    Google Scholar 

  • 100.

    Luo, G. et al. Rapid oxidation of Earth’s ambiance 2.33 billion years in the past. Sci. Adv. 2, e1600134 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Barker, H. A. Studies upon the methane-producing micro organism. Arch. für Mikrobiologie 7, 420–438 (1936).

    CAS 

    Google Scholar 

  • 103.

    Woese, C. R. & Fox, G. E. Phylogenetic construction of the prokaryotic area: the major kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977). This basic examine exhibits how ribosomal RNA sequences reveal that each one life follows one of three traces of descent from a typical ancestor.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the range, ecology, and evolution of the archaeal area of life. Science 357, eaaf3883 (2017).

    PubMed 

    Google Scholar 

  • 105.

    Blank, C. E. Not so previous archaea — the antiquity of biogeochemical processes in the archaeal area of life. Geobiology 7, 495–514 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 106.

    Salvador-Castell, M., Tourte, M. & Oger, P. M. In search for the membrane regulators of archaea. Int. J. Mol. Sci. 20, 4434 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 107.

    Koga, Y. & Morii, H. Recent advances in structural analysis on ether lipids from archaea together with comparative and physiological facets. Biosci. Biotechnol. Biochem. 69, 2019–2034 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 108.

    Moldowan, J. M. & Seifert, W. Okay. Head-to-head linked isoprenoid hydrocarbons in petroleum. Science 204, 169–171 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • 109.

    Baumann, L. M. F. et al. Intact polar lipid and core lipid stock of the hydrothermal vent methanogens Methanocaldococcus villosus and Methanothermococcus okinawensis. Org. Geochem. 126, 33–42 (2018).

    CAS 

    Google Scholar 

  • 110.

    Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52, 1747–1763 (1988).

    CAS 

    Google Scholar 

  • 111.

    Tierney, J. E. in Treatise on Geochemistry Vol. 12 (eds Holland, H.D. & Turekian, Okay.Okay.) 379–393 (Elsevier, 2014).

  • 112.

    Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).

    CAS 

    Google Scholar 

  • 113.

    Schouten, S., Forster, A., Panoto, F. E. & Sinninghe Damsté, J. S. Towards calibration of the TEX86 palaeothermometer for tropical sea floor temperatures in historical greenhouse worlds. Org. Geochem. 38, 1537–1546 (2007).

    CAS 

    Google Scholar 

  • 114.

    Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a brand new device for reconstructing historical sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002). This examine establishes the foundation for the TEX86 palaeotemperature proxy as a SST primarily based on the distribution of archaeal GDGT membrane lipids in marine sediments.

    CAS 

    Google Scholar 

  • 115.

    Schouten, S., Hopmans, E. C. & Damsté, J. S. S. The impact of maturity and depositional redox circumstances on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35, 567–571 (2004).

    CAS 

    Google Scholar 

  • 116.

    Tierney, J. E. GDGT thermometry: lipid tools for reconstructing paleotemperatures. Paleontol. Soc. Pap. 18, 115–132 (2012).

    Google Scholar 

  • 117.

    Zhang, Y. G., Pagani, M. & Wang, Z. Ring Index: a brand new technique to judge the integrity of TEX86 paleothermometry. Paleoceanography 31, 220–232 (2016).

    Google Scholar 

  • 118.

    Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B. & Sinninghe Damsté, J. S. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta 72, 1154–1173 (2008).

    CAS 

    Google Scholar 

  • 119.

    Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for previous sea floor temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    CAS 

    Google Scholar 

  • 120.

    Trommer, G. et al. Distribution of Crenarchaeota tetraether membrane lipids in floor sediments from the Red Sea. Org. Geochem. 40, 724–731 (2009).

    CAS 

    Google Scholar 

  • 121.

    Tierney, J. E. & Tingley, M. P. A Bayesian, spatially-varying calibration mannequin for the TEX86 proxy. Geochim. Cosmochim. Acta 127, 83–106 (2014).

    CAS 

    Google Scholar 

  • 122.

    Tierney, J. E. & Tingley, M. P. A TEX86 floor sediment database and prolonged Bayesian calibration. Sci. Data 2, 150029 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Zhou, A. et al. Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius. Environ. Microbiol. 22, 343–353 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 124.

    Qin, W. et al. Confounding results of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc. Natl Acad. Sci. USA 112, 10979–10984 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Hurley, S. J. et al. Influence of ammonia oxidation price on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc. Natl Acad. Sci. USA 113, 7762–7767 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    DeLengthy, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Lincoln, S. A. et al. Planktonic Euryarchaeota are a big supply of archaeal tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 111, 9858–9863 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Zeng, Z. et al. GDGT cyclization proteins determine the dominant archaeal sources of tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 116, 22505–22511 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 129.

    Besseling, M. A. et al. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: implications for lipid biosynthesis in archaea. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  • 130.

    Pearson, A. Resolving a bit of the archaeal lipid puzzle. Proc. Natl Acad. Sci. USA 116, 22423–22425 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Gold, D. A., O’Reilly, S. S., Luo, G., Briggs, D. E. G. & Summons, R. E. Prospects for sterane preservation in sponge fossils from museum collections and the utility of sponge biomarkers for molecular clocks. Bull. Peabody Mus. Nat. History 57, 181–189 (2016).

    Google Scholar 

  • 132.

    French, Okay. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Lee, A. Okay. et al. C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc. Natl Acad. Sci. USA 115, 5884–5889 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Pollier, J. et al. A widespread various squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol. 4, 226–233 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 135.

    Cronin, J. R., Pizzarello, S., Epstein, S. & Krishnamurthy, R. V. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 57, 4745–4752 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 136.

    Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. Strateg. Life Detection 25, 133–159 (2008).

    Google Scholar 

  • 137.

    Davila, A. F. & McKay, C. P. Chance and necessity in biochemistry: implications for the search for extraterrestrial biomarkers in Earth-like environments. Astrobiology 14, 534–540 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Summons, R. E. et al. Preservation of martian natural and environmental data: last report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    PubMed 

    Google Scholar 

  • 139.

    McKay, C. P. What is life — and the way will we search for it in different worlds? PLoS Biol. 2, e302 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth/‘s early ocean and ambiance. Nature 506, 307–315 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A evaluation of temporal constraints for the Palaeoproterozoic giant, constructive carbonate carbon isotope tour (the Lomagundi–Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).

    CAS 

    Google Scholar 

  • 142.

    Welander, P. V., Coleman, M., Sessions, A. L., Summons, R. E. & Newman, D. Okay. Identification of a methylase required for 2-methylhopanoid manufacturing and implications for the interpretation of sedimentary hopanes. Proc. Natl Acad. Sci. USA 107, 8537–8542 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 143.

    Zundel, M. & Rohmer, M. Prokaryotic triterpenoids. 3. The biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. Eur. J. Biochem. 150, 35–39 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 144.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic native alignment search device. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 145.

    Eddy, S. R. Profile hidden Markov fashions. Bioinformatics 14, 755–763 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 146.

    Finn, R. D. et al. The Pfam protein households database: in direction of a extra sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 147.

    Schmerk, C. L., Bernards, M. A. & Valvano, M. A. Hopanoid manufacturing is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J. Bacteriol. 193, 6712–6723 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Ricci, J. N., Morton, R., Kulkarni, G., Summers, M. L. & Newman, D. Okay. Hopanoids play a job in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme. Geobiology 15, 173–183 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 149.

    Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme delicate to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Bradley, A. S. et al. Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread progress impairment. PLoS ONE 12, e0173323 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 151.

    Bergsten, J. A evaluation of long-branch attraction. Cladistics 21, 163–193 (2005).

    Google Scholar 

  • 152.

    Chen, Okay., Durand, D. & Farach-Colton, M. NOTUNG: a program for relationship gene duplications and optimizing gene household bushes. J. Comput. Biol. 7, 429–447 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 153.

    Wu, Y.-C., Rasmussen, M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically knowledgeable gene tree error correction utilizing species bushes. Syst. Biol. 62, 110–120 (2013).

    PubMed 

    Google Scholar 

  • 154.

    Magnabosco, C., Moore, Okay. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 155.

    Brasier, M. D. et al. Questioning the proof for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    PubMed 

    Google Scholar 

  • 156.

    Knoll, A. H., Bergmann, Okay. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150493 (2016).

    Google Scholar