Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of most cancers initiation, development, and remedy resistance. Cell Stem Cell 24, 65–78 (2019).
Google Scholar
Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in most cancers development and response to immunotherapy. Nat. Med. 27, 212–224 (2021).
Google Scholar
Lüönd, F., Tiede, S. & Christofori, G. Breast most cancers for example of tumour heterogeneity and tumour cell plasticity throughout malignant development. Br. J. Cancer 125, 164–175 (2021).
Google Scholar
Bergers, G. & Fendt, S. M. The metabolism of most cancers cells throughout metastasis. Nat. Rev. Cancer 21, 162–180 (2021).
Google Scholar
Prasetyanti, P. R. & Medema, J. P. Intra-tumor heterogeneity from a most cancers stem cell perspective. Mol. Cancer 16, 41 (2017).
Google Scholar
Pastushenko, I. & Blanpain, C. EMT transition states throughout tumor development and metastasis. Trends Cell Biol. 29, 212–226 (2019).
Google Scholar
Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).
Google Scholar
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is crucial in breast most cancers. Nature 476, 346–350 (2011).
Google Scholar
Rinaldi, G. et al. In vivo proof for serine biosynthesis-defined sensitivity of lung metastasis, however not of main breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397 (2021).
Google Scholar
Ngo, B. et al. Limited environmental serine and glycine confer mind metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).
Google Scholar
Geeraerts, S. L. et al. Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis addicted breast tumor progress. Mol. Cancer Ther. 20, 50–63 (2020).
Google Scholar
Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit destiny. Nat. Chem. Biol. 12, 452–458 (2016).
Google Scholar
Schmidt, J. M. et al. Stem-cell-like properties and epithelial plasticity come up as secure traits after transient Twist1 activation. Cell Rep. 10, 131–139 (2015).
Google Scholar
Noh, S., Kim, D. H., Jung, W. H. & Koo, J. S. Expression ranges of serine/glycine metabolism-related proteins in triple damaging breast most cancers tissues. Tumour Biol. 35, 4457–4468 (2014).
Google Scholar
Pascual, G. et al. Targeting metastasis-initiating cells via the fatty acid receptor CD36. Nature 541, 41–45 (2017).
Google Scholar
Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015).
Google Scholar
Margarido, A. S., Bornes, L., Vennin, C. & van Rheenen, J. Cellular plasticity throughout metastasis: new insights supplied by intravital microscopy. Cold Spring Harb. Perspect. Med. 10, a037267 (2020).
Beerling, E., Oosterom, I., Voest, E., Lolkema, M. & van Rheenen, J. Intravital characterization of tumor cell migration in pancreatic most cancers. IntraVery important 5, e1261773 (2016).
Google Scholar
Kariya, Y., Oyama, M., Suzuki, T. & Kariya, Y. αvβ3 Integrin induces partial EMT impartial of TGF-β signaling. Commun. Biol. 4, 490 (2021).
Google Scholar
Mori, S. et al. Enhanced expression of integrin αvβ3 induced by TGF-β is required for the enhancing impact of fibroblast progress issue 1 (FGF1) in TGF-β-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells. PLoS ONE 10, e0137486 (2015).
Google Scholar
Seguin, L. et al. An integrin β3–KRAS–RalB advanced drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014).
Google Scholar
Bellahcène, A., Castronovo, V., Ogbureke, Ok. U., Fisher, L. W. & Fedarko, N. S. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in most cancers. Nat. Rev. Cancer 8, 212–226 (2008).
Google Scholar
Janik, M. E., Lityńska, A. & Vereecken, P. Cell migration—the function of integrin glycosylation. Biochim. Biophys. Acta 1800, 545–555 (2010).
Google Scholar
Pocheć, E. et al. Aberrant glycosylation of αvβ3 integrin is related to melanoma development. Anticancer Res. 35, 2093–2103 (2015).
Kremser, M. E. et al. Characterisation of α3β1 and αvβ3 integrin N-oligosaccharides in metastatic melanoma WM9 and WM239 cell strains. Biochim. Biophys. Acta 1780, 1421–1431 (2008).
Google Scholar
Buescher, J. M. et al. A roadmap for deciphering 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).
Google Scholar
Elbein, A. D. in Cell Surface and Extracellular Glycoconjugates (eds Roberts, D. D. and Mecham, R. P.) 119–180 (Academic Press, 1993); https://doi.org/10.1016/B978-0-12-589630-6.50009-5
Sakai, N., Insolera, R., Sillitoe, R. V., Shi, S.-H. & Kaprielian, Z. Axon sorting inside the spinal twine marginal zone by way of Robo-mediated inhibition of N-cadherin controls spinocerebellar tract formation. J. Neurosci. 32, 15377–15387 (2012).
Google Scholar
Chen, J. Y. et al. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and most cancers angiogenesis and metastasis pathways. Cancer Res. 71, 473–483 (2011).
Google Scholar
Sola-Penna, M., Da Silva, D., Coelho, W. S., Marinho-Carvalho, M. M. & Zancan, P. Regulation of mammalian muscle kind 6-phosphofructo-1-kinase and its implication for the management of the metabolism. IUBMB Life 62, 791–796 (2010).
Google Scholar
Rodriguez, A. E. et al. Serine metabolism helps macrophage IL-1β manufacturing. Cell Metab. 29, 1003–1011 (2019).
Google Scholar
Zhao, X., Fu, J., Du, J. & Xu, W. The function of d-3-phosphoglycerate dehydrogenase in most cancers. Int. J. Biol. Sci. 16, 1495–1506 (2020).
Google Scholar
Ma, C. et al. The different exercise of nuclear PHGDH contributes to tumour progress below nutrient stress. Nat. Metab. 3, 1357–1371 (2021).
Google Scholar
Baksh, S. C. et al. Extracellular serine controls epidermal stem cell destiny and tumour initiation. Nat. Cell Biol. 22, 779–790 (2020).
Google Scholar
Liu, J. et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead field M1. J. Neurooncol. 111, 245–255 (2013).
Google Scholar
Ma, X., Li, B., Liu, J., Fu, Y. & Luo, Y. Phosphoglycerate dehydrogenase promotes pancreatic most cancers improvement by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res. 38, 66 (2019).
Google Scholar
Teoh, S. T., Ogrodzinski, M. P., Ross, C., Hunter, Ok. W. & Lunt, S. Y. Sialic acid metabolism: a key participant in breast most cancers metastasis revealed by metabolomics. Front. Oncol. 8, 174 (2018).
Google Scholar
Vandekeere, S. et al. Serine synthesis by way of PHGDH is crucial for heme manufacturing in endothelial cells. Cell Metab. 28, 573–587 (2018).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Methods 12, 357–360 (2015).
Google Scholar
Wright, G. W. & Simon, R. M. A random variance mannequin for detection of differential gene expression in small microarray experiments. Bioinformatics 19, 2448––2455 (2003).
Google Scholar
Paulo, J. A. & Gygi, S. P. Nicotine-induced protein expression profiling reveals mutually altered proteins throughout 4 human cell strains. Proteomics 17, 1600319 (2017).
Bassez, A. et al. A single-cell map of intratumoral modifications throughout anti-PD1 remedy of sufferers with breast most cancers. Nat. Med. 27, 820–832 (2021).
Google Scholar
Zhang, X. et al. A renewable tissue useful resource of phenotypically secure, biologically and ethnically various, patient-derived human breast most cancers xenograft fashions. Cancer Res. 73, 4885 (2013).
Google Scholar
Lv, X. et al. Orthotopic transplantation of breast tumors as preclinical fashions for breast most cancers. J. Vis. Exp. 159, e61173 (2020).
Quintana, E. et al. Human melanoma metastasis in NSG mice correlates with scientific final result in sufferers. Sci. Transl. Med. 4, 159ra149 (2012).
Google Scholar
Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).
Google Scholar
Berg, S. et al. ilastik: interactive machine studying for (bio)picture evaluation. Nat. Methods 16, 1226–1232 (2019).
Google Scholar
Carpenter, A. E. et al. CellProfiler: picture evaluation software program for figuring out and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
Google Scholar
Zanotelli, V. R. T. & Bodenmiller, B. ImcSegmentationPipeline: a pixelclassification primarily based multiplexed picture segmentation pipeline. Zenodo https://doi.org/10.5281/zenodo.3841961 (2020).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Methods 9, 676–682 (2012).
Google Scholar
Rueden, C. T. et al. ImageJ2: ImageJ for the subsequent technology of scientific picture information. BMC Bioinform. 18, 529 (2017).
van Gorsel, M., Elia, I. & Fendt, S.-M. 13C tracer evaluation and metabolomics in 3D cultured most cancers cells. Methods Mol. Biol. 1862, 53–66 (2019).
Google Scholar
Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary metabolite unit (EMU) primarily based methodology of isotopically nonstationary flux evaluation. Biotechnol. Bioeng. 99, 686–699 (2008).
Google Scholar
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for pure secure isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).
Google Scholar