Green Hearts
No Result
View All Result
  • Home
  • World
  • Business
  • Sports
  • Agriculture
  • Nature
  • Animals
  • Economy
  • Education
  • Entertainment
  • Life Style
  • Travel
Green Hearts
No Result
View All Result
ADVERTISEMENT
Home Nature

Plastic pollution in the Arctic

Green Hearts by Green Hearts
April 5, 2022
in Nature
379 20
0
549
SHARES
2.5k
VIEWS
Share on FacebookShare on Twitter

RelatedPosts

Roseburg Public Library invites community members to streaming event with nature writer – KPIC News

January 26, 2023

Nature needs you!

January 26, 2023

Climate change threatens olive oil production in the Levant

January 26, 2023

Nike Air Force 1 Next Nature White Pink DV3808-100

January 26, 2023


  • Plastics Europe. Plastics — the Facts 2020: An evaluation of European plastics manufacturing, demand and waste knowledge (Plastics Europe, 2020).

  • Borrelle, S. B. et al. Predicted progress in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Google Scholar 

  • Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Google Scholar 

  • Bergmann, M., Tekman, M. B. & Gutow, L. Marine litter: Sea change for plastic pollution. Nature 544, 297–297 (2017).

    Google Scholar 

  • Villarrubia-Gómez, P., Cornell, S. E. & Fabres, J. Marine plastic pollution as a planetary boundary risk–The drifting piece in the sustainability puzzle. Mar. Policy 96, 213–220 (2018).

    Google Scholar 

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The international risk from plastic pollution. Science 373, 61–65 (2021).

    Google Scholar 

  • Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    Google Scholar 

  • Andrady, A. L. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 57–72 (Springer, 2015).

  • van Sebille, E. et al. A world stock of small floating plastic particles. Environ. Res. Lett. 10, 124006 (2015).

    Google Scholar 

  • Cózar, A. et al. Plastic particles in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    Google Scholar 

  • van Sebille, E., England, M. H. & Froyland, G. Origin, dynamics and evolution of ocean rubbish patches from noticed floor drifters. Environ. Res. Lett. 7, 044040 (2012).

    Google Scholar 

  • Parga Martínez, Okay. B., Tekman, M. B. & Bergmann, M. Temporal traits in marine litter at three stations of the HAUSGARTEN observatory in the Arctic deep sea. Front. Mar. Sci. 7, 321 (2020).

    Google Scholar 

  • Ostle, C. et al. The rise in ocean plastics evidenced from a 60-year time collection. Nat. Commun. 10, 1622 (2019).

    Google Scholar 

  • Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine atmosphere microfiber contamination: Global patterns and the range of microparticle origins. Environ. Pollut. 237, 275–284 (2018).

    Google Scholar 

  • Lima, A. R. A. et al. Global patterns for the spatial distribution of floating microfibers: Arctic Ocean as a possible accumulation zone. J. Hazard. Mater. 403, 123796 (2021).

    Google Scholar 

  • Protection of the Arctic Marine Environment (PAME). Desktop research on marine litter together with microplastics in the Arctic (PAME, 2019).

  • Arctic Monitoring and Assessment Programme (AMAP). AMAP litter and microplastics monitoring tips. Version 1.0, 257 pp (AMAP, 2021).

  • Collard, F. & Ask, A. Plastic ingestion by Arctic fauna: A overview. Sci. Total Environ. 786, 147462 (2021).

    Google Scholar 

  • Baak, J. et al. Plastic ingestion by seabirds in the circumpolar Arctic: a overview. Environ. Rev. 28, 506–516 (2020).

    Google Scholar 

  • Eriksen, M. et al. Mitigation methods to reverse the rising development of plastics in Polar Regions. Environ. Int. 139, 105704 (2020).

    Google Scholar 

  • Tirelli, V., Suaria, G. & Lusher, A. L. in Handbook of Microplastics in the Environment (eds Rocha-Santos, T., Costa, M., & Mouneyrac, C.) 1–42 (Springer, 2020).

  • Halsband, C. & Herzke, D. Plastic litter in the European Arctic: what do we all know? Emerg. Contam. 5, 308–318 (2019).

    Google Scholar 

  • Arctic Monitoring and Assessment Programme (AMAP). Arctic local weather change replace 2021: key traits and impacts. Summary for policy-makers (AMAP, 2021).

  • Cózar, A. et al. The Arctic Ocean as a lifeless finish for floating plastics in the North Atlantic department of the Thermohaline Circulation. Sci. Adv. 3, e1600582 (2017).

    Google Scholar 

  • Mu, J. et al. Microplastics abundance and traits in floor waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 143, 58–65 (2019).

    Google Scholar 

  • Kim, S.-Okay. et al. Importance of seasonal sea ice in the western Arctic ocean to the Arctic and international microplastic budgets. J. Hazard. Mater. 418, 125971 (2021).

    Google Scholar 

  • Yakushev, E. et al. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun. Earth Environ. 2, 23 (2021).

    Google Scholar 

  • Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of hint metals to plastic resin pellets in the marine atmosphere. Environ. Pollut. 160, 42–48 (2012).

    Google Scholar 

  • Peeken, I. et al. Arctic sea ice is a vital temporal sink and technique of transport for microplastic. Nat. Commun. 9, 1505 (2018).

    Google Scholar 

  • van Sebille, E. et al. The bodily oceanography of the transport of floating marine particles. Environ. Res. Lett. 15, 023003 (2020).

    Google Scholar 

  • Gavrilo, M. Plastic pollution and seabirds in the Russian Arctic (Conservation of Arctic Flora and Fauna (CAFF), 2019).

  • Nashoug, B. F. Sources of marine litter — workshop report, Svalbard 4th–sixth September 2016 (SALT, 2017).

  • Benzik, A. N., Orlov, A. M. & Novikov, M. A. Marine seabed litter in Siberian Arctic: A primary try to assess. Mar. Pollut. Bull. 172, 112836 (2021).

    Google Scholar 

  • OSPAR Commission. Marine litter in the North-East Atlantic Region: evaluation and priorities for response (OSPAR Commission, 2009).

  • Buhl-Mortensen, L. & Buhl-Mortensen, P. Marine litter in the Nordic Seas: Distribution composition and abundance. Mar. Pollut. Bull. 125, 260–270 (2017).

    Google Scholar 

  • Manville, A. M. in Proceedings of the Second International Conference on Marine Debris (eds Shomura, R. S. & Godfrey, M. L.) 2–7 (NOAA, 1990).

  • Polasek, L. et al. Marine particles in 5 nationwide parks in Alaska. Mar. Pollut. Bull. 117, 371–379 (2017).

    Google Scholar 

  • Falk-Andersson, J. et al. Svalbard Beach litter deep dive (SALT, 2019).

  • Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic seashores and impacts wild life. Mar. Pollut. Bull. 125, 535–540 (2017).

    Google Scholar 

  • Jaskólski, M. W., Pawłowski, Ł., Strzelecki, M. C., Zagórski, P. & Lane, T. P. Trash on Arctic seaside: Coastal pollution alongside Calypsostranda, Bellsund, Svalbard. Pol. Polar Res. 39, 211–224 (2018).

    Google Scholar 

  • Węsławski, J. M. & Kotwicki, L. Macro-plastic litter, a brand new vector for boreal species dispersal on Svalbard. Pol. Polar Res. 39, 165–174 (2018).

    Google Scholar 

  • Vesman, A., Moulin, E., Egorova, A. & Zaikov, Okay. Marine litter pollution on the Northern Island of the Novaya Zemlya archipelago. Mar. Pollut. Bull. 150, 110671 (2020).

    Google Scholar 

  • Mallory, M. L. et al. Anthropogenic litter in marine waters and coastlines of Arctic Canada and West Greenland. Sci. Total Environ. 783, 146971 (2021).

    Google Scholar 

  • Kylin, H. Marine particles on two Arctic seashores in the Russian Far East. Polar Res. 39, 3381 (2020).

    Google Scholar 

  • Tošić, T. N., Vruggink, M. & Vesman, A. Microplastics quantification in floor waters of the Barents, Kara and White Seas. Mar. Pollut. Bull. 161, 111745 (2020).

    Google Scholar 

  • Liboiron, M. et al. Abundance and sorts of plastic pollution in floor waters in the Eastern Arctic (Inuit Nunangat) and the case for reconciliation science. Sci. Total Environ. 782, 146809 (2021).

    Google Scholar 

  • Merrell, J. & Theodore, R. in Proceedings of the Workshop on the Fate and Impact of Marine Debris (eds Shomura, R. S. & Yoshida, Y. O.) 26–29 (NOAA, 1984).

  • Ivanova, L., Sokolov, Okay. & Kharitonova, G. Plastic pollution tendencies of the Barents Sea and adjoining waters underneath the local weather change. Arct. North 32, 121–145 (2018).

    Google Scholar 

  • Tekman, M. B., Krumpen, T. & Bergmann, M. Marine litter on deep Arctic seafloor continues to extend and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. I 120, 88–99 (2017).

    Google Scholar 

  • Melia, N., Haines, Okay. & Hawkins, E. Sea ice decline and twenty first century trans-Arctic transport routes. Geophys. Res. Lett. 43, 9720–9728 (2016).

    Google Scholar 

  • Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Google Scholar 

  • Warren, J. A., Berner, J. E. & Curtis, T. Climate change and human well being: infrastructure impacts to small distant communities in the north. Int. J. Circumpolar Health 64, 487–497 (2005).

    Google Scholar 

  • Kirkelund, G. M., Diez, L., Scheutz, C. & Eisted, R. in fifth International Conference on Sustainable Solid Waste Management (European Commission, 2017).

  • Eisted, R. & Christensen, T. H. Waste administration in Greenland: present scenario and challenges. Waste Manag. Res. 29, 1064–1070 (2011).

    Google Scholar 

  • Samuelson, G. M. Water and waste administration points in the Canadian Arctic: Iqaluit, Baffin Island. Can. Water Resour. J. 23, 327–338 (1998).

    Google Scholar 

  • Kirkfeldt, T. S. Marine Litter in Greenland. Master’s thesis, Aalborg Univ. (2016).

  • Ershova, A., Makeeva, I., Malgina, E., Sobolev, N. & Smolokurov, A. Combining citizen and traditional science for microplastics monitoring in the White Sea basin (Russian Arctic). Mar. Pollut. Bull. 173, 112955 (2021).

    Google Scholar 

  • Huntington, A. et al. A primary evaluation of microplastics and different anthropogenic particles in Hudson Bay and the surrounding jap Canadian Arctic waters of Nunavut. FACETS 5, 432–454 (2020).

    Google Scholar 

  • Athey, S. N. et al. The widespread environmental footprint of indigo denim microfibers from blue denims. Environ. Sci. Technol. Lett. 7, 840–847 (2020).

    Google Scholar 

  • Rist, S. et al. Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ. Pollut. 266, 115248 (2020).

    Google Scholar 

  • von Friesen, L. W. et al. Summer sea ice soften and wastewater are essential native sources of microlitter to Svalbard waters. Environ. Int. 139, 105511 (2020).

    Google Scholar 

  • Granberg, M. E., Ask, A. & Gabrielsen, G. W. Local contamination in Svalbard-Overview and recommendations for remediation actions (Norwegian Polar Institute, 2017).

  • De Falco, F. et al. Evaluation of microplastic launch brought on by textile washing processes of artificial materials. Environ. Pollut. 236, 916–925 (2017).

    Google Scholar 

  • Magnusson, Okay. et al. Microlitter in sewage remedy programs: A Nordic perspective on waste water remedy crops as pathways for microscopic anthropogenic particles to marine programs (Nordisk Ministerråd, 2016).

  • Dippo, B. Microplastics in the Coastal Environment of West Iceland. Master’s thesis, Univ. Akureyri (2012).

  • Granberg, M. et al. Anthropogenic microlitter in wastewater and marine samples from Ny-Ålesund, Barentsburg and Signehamna, Svalbard (IVL Swedish Environmental Research Institute, 2019).

  • United Nation Environment Programme (UNEP). Marine plastic particles and microplastics: Global classes and analysis to encourage motion and information coverage change (UNEP, 2016).

  • Hamilton, B. M. et al. Microplastics round an Arctic seabird colony: Particle group composition varies throughout environmental matrices. Sci. Total Environ. 773, 145536 (2021).

    Google Scholar 

  • Knutsen, H. et al. Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment floor: A case research from the Norwegian Continental Shelf. Mar. Environ. Res. 161, 105073 (2020).

    Google Scholar 

  • Bergmann, M., Sandhop, N., Schewe, I. & D’Hert, D. Observations of floating anthropogenic litter in the Barents Sea and Fram Strait, Arctic. Polar Biol. 39, 553–560 (2016).

    Google Scholar 

  • Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: the first reported values of particles in floor and sub-surface samples. Sci. Rep. 5, 14947 (2015).

    Google Scholar 

  • Pogojeva, M. et al. Distribution of floating marine macro-litter in relation to oceanographic traits in the Russian Arctic Seas. Mar. Pollut. Bull. 166, 112201 (2021).

    Google Scholar 

  • Mountford, A. S. & Morales Maqueda, M. A. Modeling the accumulation and transport of microplastics by sea ice. J. Geophys. Res. 126, e2020JC016826 (2021).

    Google Scholar 

  • Onink, V., Wichmann, D., Delandmeter, P. & van Sebille, E. The function of Ekman currents, geostrophy, and Stokes drift in the accumulation of floating microplastic. J. Geophys. Res. 124, 1474–1490 (2019).

    Google Scholar 

  • Chia-Ying, Okay., Yi-Chia, H. & Ming-Shiou, J. Global distribution and cleanup alternatives for macro ocean litter: 1 / 4 century of accumulation dynamics underneath windage results. Environ. Res. Lett. 15, 104063 (2020).

    Google Scholar 

  • Thiel, M., Hinojosa, I. A., Joschko, T. & Gutow, L. Spatio-temporal distribution of floating objects in the German Bight (North Sea). J. Sea Res. 65, 368–379 (2011).

    Google Scholar 

  • Brach, L. et al. Anticyclonic eddies enhance accumulation of microplastic in the North Atlantic subtropical gyre. Mar. Pollut. Bull. 126, 191–196 (2018).

    Google Scholar 

  • Pan, Z. et al. Microplastics in the Northwestern Pacific: Abundance, distribution, and traits. Sci. Total Environ. 650, 1913–1922 (2019).

    Google Scholar 

  • Pnyushkov, A., Polyakov, I. V., Padman, L. & Nguyen, A. T. Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean. Ocean Sci. 14, 1329–1347 (2018).

    Google Scholar 

  • Wekerle, C. et al. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with concentrate on the seasonal cycle. J. Geophys. Res. 122, 8385–8405 (2017).

    Google Scholar 

  • Tekman, M. B. et al. Tying up unfastened ends of microplastic pollution in the Arctic: Distribution from the sea floor, by the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090 (2020).

    Google Scholar 

  • Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the international dispersal of marine microplastic. J. Geophys. Res. 124, 6086–6096 (2019).

    Google Scholar 

  • Kühn, S., Bravo Rebolledo, E. L. & van Franeker, J. A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 75–116 (Springer, 2015).

  • LITTERBASE. Online Portal for Marine Litter. www.litterbase.org (2021).

  • Kanhai, L. D. Okay. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 8–18 (2018).

    Google Scholar 

  • Ross, P. S. et al. Pervasive distribution of polyester fibres in the Arctic Ocean is pushed by Atlantic inputs. Nat. Commun. 12, 106 (2021).

    Google Scholar 

  • Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future 2, EF000240 (2014).

    Google Scholar 

  • Kanhai, L. D. Okay., Gardfeldt, Okay., Krumpen, T., Thompson, R. C. & O’Connor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004 (2020).

    Google Scholar 

  • Juhl, A. R., Krembs, C. & Meiners, Okay. M. Seasonal improvement and differential retention of ice algae and different natural fractions in first-year Arctic sea ice. Mar. Ecol. Prog. Ser. 436, 1–16 (2011).

    Google Scholar 

  • Hoffmann, L., Eggers, S. L., Allhusen, E., Katlein, C. & Peeken, I. Interactions between the ice algae Fragillariopsis cylindrus and microplastics in sea ice. Environ. Int. 139, 105697 (2020).

    Google Scholar 

  • Wollenburg, J. E. et al. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom. Sci. Rep. 8, 7703 (2018).

    Google Scholar 

  • Bergmann, M. et al. High portions of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    Google Scholar 

  • Frank, Y. A. et al. Preliminary screening for microplastic concentrations in the floor water of the Ob and Tom Rivers in Siberia, Russia. Sustainability 13, 80 (2021).

    Google Scholar 

  • Engler, R. E. The complicated interplay between marine particles and poisonous chemical substances in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).

    Google Scholar 

  • Grøsvik, B. E. et al. Assessment of marine litter in the Barents Sea, part of the Joint Norwegian–Russian Ecosystem Survey. Front. Mar. Sci. 5, 72 (2018).

    Google Scholar 

  • Coyle, R., Hardiman, G. & Driscoll, Okay. O. Microplastics in the marine atmosphere: A overview of their sources, distribution processes, uptake and alternate in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).

    Google Scholar 

  • Brunner, Okay., Kukulka, T., Proskurowski, G. & Law, Okay. L. Passive buoyant tracers in the ocean floor boundary layer: 2. Observations and simulations of microplastic marine particles. J. Geophys. Res. Oceans 120, 7559–7573 (2015).

    Google Scholar 

  • Wobus, F., Shapiro, G. I., Huthnance, J. M. & Maqueda, M. A. M. The piercing of the Atlantic Layer by an Arctic shelf water cascade in an idealised research impressed by the Storfjorden overflow in Svalbard. Ocean Model. 71, 54–65 (2013).

    Google Scholar 

  • Buhl-Mortensen, P., Gordon, D. C., Buhl-Mortensen, L. & Kulka, D. W. First description of a Lophelia pertusa reef complicated in Atlantic Canada. Deep Sea Res. I 126, 21–30 (2017).

    Google Scholar 

  • Purser, A. et al. Local variation in the distribution of benthic megafauna species related to cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).

    Google Scholar 

  • Sen, A. et al. Atypical organic options of a brand new chilly seep website on the Lofoten-Vesterålen continental margin (northern Norway). Sci. Rep. 9, 1762 (2019).

    Google Scholar 

  • Woodall, L. C. et al. The deep sea is a serious sink for microplastic particles. R. Soc. Open Sci. 1, 140317 (2014).

    Google Scholar 

  • Schulz, M., Bergmann, M., von Juterzenka, Okay. & Soltwedel, T. Colonisation of arduous substrata alongside a channel system in the deep Greenland Sea. Polar Biol. 33, 1359–1369 (2010).

    Google Scholar 

  • Kanhai, L. D. Okay. et al. Deep sea sediments of the Arctic Central Basin: A possible sink for microplastics. Deep Sea Res. I 145, 137–142 (2019).

    Google Scholar 

  • Mu, J. et al. Abundance and distribution of microplastics in the floor sediments from the northern Bering and Chukchi Seas. Environ. Pollut. 245, 122–130 (2019).

    Google Scholar 

  • Kuroda, M. et al. The present state of marine particles on the seafloor in offshore space round Japan. Mar. Pollut. Bull. 161, 111670 (2020).

    Google Scholar 

  • Kane, I. A. et al. Seafloor microplastic hotspots managed by deep-sea circulation. Science 368, 1140–1145 (2020).

    Google Scholar 

  • Collard, F. et al. Anthropogenic particles in sediment from an Arctic fjord. Sci. Total Environ. 772, 145575 (2021).

    Google Scholar 

  • Bergmann, M. et al. White and fantastic? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    Google Scholar 

  • Stefánsson, H. et al. Microplastics in glaciers: first outcomes from the Vatnajökull ice cap. Sustainability 13, 4183 (2021).

    Google Scholar 

  • Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A. & Dastoor, A. P. A mass steadiness stock of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).

    Google Scholar 

  • Evangeliou, N. et al. Atmospheric transport is a serious pathway of microplastics to distant areas. Nat. Commun. 11, 3381 (2020).

    Google Scholar 

  • Allen, S. et al. Examination of the ocean as a supply for atmospheric microplastics. PLoS One 15, e0232746 (2020).

    Google Scholar 

  • Iversen, M. et al. The eating regimen of polar bears (Ursus maritimus) from Svalbard, Norway, inferred from scat evaluation. Polar Biol. 36, 561–571 (2013).

    Google Scholar 

  • Botterell, Z. L. R. et al. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Sci. Total Environ. (in the press).

  • Fang, C. et al. Microplastics in three typical benthic species from the Arctic: Occurrence, traits, sources, and environmental implications. Environ. Res. 192, 110326 (2021).

    Google Scholar 

  • Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic areas. Chemosphere 209, 298–306 (2018).

    Google Scholar 

  • Lusher, A., Bråte, I. L., Hurley, R., Iversen, Okay. & Olsen, M. Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and proposals for future monitoring of microplastics (R & D-project). Norwegian Institute for Water Research https://niva.brage.unit.no/niva-xmlui/handle/11250/2470297 (2017).

  • Iannilli, V., Pasquali, V., Setini, A. & Corami, F. First proof of microplastics ingestion in benthic amphipods from Svalbard. Environ. Res. 179, 108811 (2019).

    Google Scholar 

  • Morgana, S. et al. Microplastics in the Arctic: a case research with sub-surface water and fish samples off Northeast Greenland. Environ. Pollut. 242, 1078–1086 (2018).

    Google Scholar 

  • de Vries, A. N., Govoni, D., Árnason, S. H. & Carlsson, P. Microplastic ingestion by fish: Body measurement, situation issue and intestine fullness will not be associated to the quantity of plastics consumed. Mar. Pollut. Bull. 151, 110827 (2020).

    Google Scholar 

  • Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278 (2018).

    Google Scholar 

  • Bråte, I. L. N., Eidsvoll, D. P., Steindal, C. C. & Thomas, Okay. V. Plastic ingestion by Atlantic cod (Gadus morhua) from the Norwegian coast. Mar. Pollut. Bull. 112, 105–110 (2016).

    Google Scholar 

  • Liboiron, M. et al. Low incidence of plastic ingestion amongst three fish species important for human consumption on the island of Newfoundland, Canada. Mar. Pollut. Bull. 141, 244–248 (2019).

    Google Scholar 

  • Nielsen, J., Hedeholm, R. B., Simon, M. & Steffensen, J. F. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol. 37, 37–46 (2014).

    Google Scholar 

  • Leclerc, L.-M. et al. A lacking piece in the Arctic meals net puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 1197–1208 (2012).

    Google Scholar 

  • Trevail, A. M., Gabrielsen, G. W., Kühn, S., & Van Franeker, J. A. Elevated ranges of ingested plastic in a excessive Arctic seabird, the northern fulmar (Fulmarus glacialis). Polar Biol. 38, 975–981 (2015).

    Google Scholar 

  • Provencher, J. F. et al. Quantifying ingested particles in marine megafauna: a overview and proposals for standardization. Anal. Methods 9, 1454–1469 (2017).

    Google Scholar 

  • Martin, A. R. & Clarke, M. R. The eating regimen of sperm whales (Physeter macrocephalus) captured between Iceland and Greenland. J. Mar. Biol. Assoc. UK 66, 779–790 (2009).

    Google Scholar 

  • Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).

    Google Scholar 

  • Finley, Okay. J. Natural historical past and conservation of the Greenland whale, or bowhead, in the Northwest Atlantic. Arctic 54, 55–76 (2001).

    Google Scholar 

  • Walker, W. A. & Hanson, M. B. Biological observations on Stejneger’s beaked whale, Mesoplodon Stejnegeri, from strandings on Adak Island, Alaska. Mar. Mamm. Sci. 15, 1314–1329 (1999).

    Google Scholar 

  • Bourdages, M. P. T. et al. No plastics detected in seal (Phocidae) stomachs harvested in the jap Canadian Arctic. Mar. Pollut. Bull. 150, 110772 (2020).

    Google Scholar 

  • Pinzone, M. et al. First file of plastic particles in the abdomen of a hooded seal pup from the Greenland Sea. Mar. Pollut. Bull. 167, 112350 (2021).

    Google Scholar 

  • Carlsson, P., Singdahl-Larsen, C. & Lusher, A. L. Understanding the incidence and destiny of microplastics in coastal Arctic ecosystems: The case of floor waters, sediments and walrus (Odobenus rosmarus). Sci. Total Environ. 792, 148308 (2021).

    Google Scholar 

  • Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M. & Hoh, E. Polystyrene plastic: a supply and sink for polycyclic fragrant hydrocarbons in the marine atmosphere. Environ. Sci. Technol. 47, 13976–13984 (2013).

    Google Scholar 

  • Lavers, J. L. & Bond, A. L. Ingested plastic as a route for hint metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500 (2016).

    Google Scholar 

  • Herzke, D. et al. Negligible influence of ingested microplastics on tissue concentrations of persistent natural pollution in northern fulmars off coastal Norway. Environ. Sci. Technol. 50, 1924–1933 (2015).

    Google Scholar 

  • Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic particles in aquatic meals webs: what we all know and don’t learn about uptake and trophic switch. Environ. Rev. 27, 304–317 (2018).

    Google Scholar 

  • Neumann, S. et al. Ingested plastics in northern fulmars (Fulmarus glacialis): A pathway for polybrominated diphenyl ether (PBDE) publicity? Sci. Total Environ. 778, 146313 (2021).

    Google Scholar 

  • AMAP evaluation 2016: chemical substances of rising Arctic concern (Arctic Monitoring and Assessment Programme (AMAP), 2017).

  • Lu, Z. et al. Occurrence of substituted diphenylamine antioxidants and benzotriazole UV stabilizers in Arctic seabirds and seals. Sci. Total Environ. 663, 950–957 (2019).

    Google Scholar 

  • Padula, V., Beaudreau, A. H., Hagedorn, B. & Causey, D. Plastic-derived contaminants in Aleutian Archipelago seabirds with assorted foraging methods. Mar. Pollut. Bull. 158, 111435 (2020).

    Google Scholar 

  • Bech, G. Retrieval of misplaced gillnets at Ilulissat Kangia (Northwest Atlantic Fisheries Organization (NAFO), 1995).

  • Kapel, F. O. A word on the net-entanglement of a bowhead whale (Balaena mysticetus) in Northwest Greenland, November 1980. Report of the International Whaling Commission, 35, 377–378 (1985).

  • Aasen, A. et al. Survey report from the joint Norwegian/Russian Ecosystem Survey in the Barents Sea and adjoining waters, August-October 2013 (IMR/PINRO, 2013).

  • Prokhorova, T. in Survey Report from the Joint Norwegian/Russian Ecosystem Survey in the Barents Sea and Adjacent Waters, August-October 2014 Vol. 1/2015 (ed Eriksen, E.) 1–153 (IMR/PINRO, 2014).

  • Barnes, D. Okay. A. & Milner, P. Drifting plastic and its penalties for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 146, 815–825 (2005).

    Google Scholar 

  • Kotwicki, L. et al. The re-appearance of the Mytilus spp. complicated in Svalbard, Arctic, throughout the Holocene: The case for an arrival by anthropogenic flotsam. Glob. Planet. Change 202, 103502 (2021).

    Google Scholar 

  • Bucci, Okay., Tulio, M. & Rochman, C. M. What is understood and unknown about the results of plastic pollution: A meta-analysis and systematic overview. Ecol. Appl. 30, e02044 (2020).

    Google Scholar 

  • Galloway, T. & Lewis, C. Marine microplastics. Curr. Biol. 27, R445–R446 (2017).

    Google Scholar 

  • Rochman, C. M. et al. The ecological impacts of marine particles: unraveling the demonstrated proof from what’s perceived. Ecology 97, 302–312 (2016).

    Google Scholar 

  • Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic strikes pollution and components to worms, decreasing features linked to well being and biodiversity. Curr. Biol. 23, 2388–2392 (2013).

    Google Scholar 

  • Rochman, C. M., Kurobe, T., Flores, I. & Teh, S. J. Early warning indicators of endocrine disruption in grownup fish from the ingestion of polyethylene with and with out sorbed chemical pollution from the marine atmosphere. Sci. Total Environ. 493, 656–661 (2014).

    Google Scholar 

  • von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and results of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental publicity. Environ. Sci. Technol. 46, 11327–11335 (2012).

    Google Scholar 

  • Kaposi, Okay. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has restricted influence on a marine larva. Environ. Sci. Technol. 48, 1638–1645 (2014).

    Google Scholar 

  • Sussarellu, R. et al. Oyster copy is affected by publicity to polystyrene microplastics. Proc. Natl Acad. Sci. USA. 113, 2430–2435 (2016).

    Google Scholar 

  • Lannuzel, D. et al. The way forward for Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).

    Google Scholar 

  • Chiappone, M., Dienes, H., Swanson, D. W. & Miller, S. L. Impacts of misplaced fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol. Conserv. 121, 221–230 (2005).

    Google Scholar 

  • Mouchi, V. et al. Long-term aquaria research suggests species-specific responses of two cold-water corals to macro-and microplastics publicity. Environ. Pollut. 253, 322–329 (2019).

    Google Scholar 

  • Uhrin, A. V. & Schellinger, J. Marine particles impacts to a tidal fringing-marsh in North Carolina. Mar. Pollut. Bull. 62, 2605–2610 (2011).

    Google Scholar 

  • Green, D. S., Boots, B., Blockley, D. J., Rocha, C. & Thompson, R. C. Impacts of discarded plastic luggage on marine assemblages and ecosystem functioning. Environ. Sci. Technol. 49, 5380–5389 (2015).

    Google Scholar 

  • Geilfus, N. X. et al. Distribution and impacts of microplastic incorporation inside sea ice. Mar. Pollut. Bull. 145, 463–473 (2019).

    Google Scholar 

  • Shen, M. et al. Can microplastics pose a risk to ocean carbon sequestration? Mar. Pollut. Bull. 150, 110712 (2020).

    Google Scholar 

  • Ganguly, M. & Ariya, P. A. Ice nucleation of mannequin nanoplastics and microplastics: a novel artificial protocol and the affect of particle capping at numerous atmospheric environments. ACS Earth Space Chem. 3, 1729–1739 (2019).

    Google Scholar 

  • Chen, X., Huang, G., Gao, S. & Wu, Y. Effects of permafrost degradation on international microplastic biking underneath local weather change. J. Environ. Chem. Eng. 9, 106000 (2021).

    Google Scholar 

  • Welden, N. A. C. & Lusher, A. L. Impacts of adjusting ocean circulation on the distribution of marine microplastic litter. Integr. Environ. Assess. Manag. 13, 483–487 (2017).

    Google Scholar 

  • Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in final millennium. Nat. Geosci. 14, 118–120 (2021).

    Google Scholar 

  • Alkama, R. et al. Wind amplifies the polar sea ice retreat. Environ. Res. Lett. 15, 124022 (2020).

    Google Scholar 

  • Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D. W. & Law, Okay. L. The impact of wind mixing on the vertical distribution of buoyant plastic particles. Geophys. Res. Lett. 39, L07601 (2012).

    Google Scholar 

  • Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

  • Peng, L. et al. Role of intense Arctic storm in accelerating summer season sea ice soften: An in situ observational research. Geophys. Res. Lett. 48, e2021GL092714 (2021).

    Google Scholar 

  • Werbowski, L. M. et al. Urban stormwater runoff: A significant pathway for anthropogenic particles, black rubbery fragments, and different sorts of microplastics to city receiving waters. ACS ES&T Water 1, 1420–1428 (2021).

    Google Scholar 

  • Serreze, M. C. & Meier, W. N. The Arctic’s sea ice cowl: traits, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 1436, 36–53 (2019).

    Google Scholar 

  • Mjelde, A., Martinsen, Okay., Eide, M. & Endresen, Ø. Environmental accounting for Arctic transport–A framework constructing on ship monitoring knowledge from satellites. Mar. Pollut. Bull. 87, 22–28 (2014).

    Google Scholar 

  • The New Plastics Economy: Rethinking the way forward for plastics (World Economic Forum, 2016).

  • Zheng, J. & Suh, S. Strategies to cut back the international carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Google Scholar 

  • Hamilton, L. A. & Feit, S. Plastic and local weather: the hidden prices of a plastic planet (eds Kistler, A. & Muffet, C.) 1–95 (Center for International Environmental Law (CIEL), 2019).

  • Royer, S.-J., Ferrón, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the atmosphere. PLoS One 13, e0200574 (2018).

    Google Scholar 

  • Lau, W. W. Y. et al. Evaluating situations towards zero plastic pollution. Science 369, 1455–1461 (2020).

    Google Scholar 

  • Falk-Andersson, J., Larsen Haarr, M. & Havas, V. Basic ideas for improvement and implementation of plastic clean-up applied sciences: What can we study from fisheries administration? Sci. Total Environ. 745, 141117 (2020).

    Google Scholar 

  • He, P. & Suuronen, P. Technologies for the marking of fishing gear to determine gear parts entangled on marine animals and to cut back deserted, misplaced or in any other case discarded fishing gear. Mar. Pollut. Bull. 129, 253–261 (2018).

    Google Scholar 

  • Chen, C.-L. & Liu, T.-Okay. Fill the hole: Developing administration methods to manage rubbish pollution from fishing vessels. Mar. Policy 40, 34–40 (2013).

    Google Scholar 

  • Olsen, J., Nogueira, L. A., Normann, A. Okay., Vangelsten, B. V. & Bay-Larsen, I. Marine litter: Institutionalization of attitudes and practices amongst fishers in Northern Norway. Mar. Policy 121, 104211 (2020).

    Google Scholar 

  • Bilkovic, D. M., Havens, Okay. J., Stanhope, D. M. & Angstadt, Okay. T. Use of absolutely biodegradable panels to cut back derelict pot threats to marine fauna. Conserv. Biol. 26, 957–966 (2012).

    Google Scholar 

  • Grimaldo, E. et al. The impact of long-term use on the catch effectivity of biodegradable gillnets. Mar. Pollut. Bull. 161, 111823 (2020).

    Google Scholar 

  • Newman, S., Watkins, E., Farmer, A., ten Brink, P. & Schweitzer, J.-P. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 367–394 (Springer, 2015).

  • Skimming the floor: utilizing seabirds to observe plastic in the Arctic (Conservation of Arctic Flora and Fauna, 2020).

  • Melvin, J., Bury, M., Ammendolia, J., Mather, C. & Liboiron, M. Critical gaps in shoreline plastics pollution analysis. Front. Mar. Sci. 8, 845 (2021).

    Google Scholar 

  • Soltwedel, T. et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER website HAUSGARTEN. Ecol. Indic. 65, 89–102 (2016).

    Google Scholar 

  • Aliani, S., Casagrande, G., Catapano, P. & Catapano, V. in Mare Plasticum-The Plastic Sea: Combatting Plastic Pollution Through Science and Art (eds Streit-Bianchi, M., Cimadevila, M. & Trettnak, W.) 89–116 (Springer, 2020).

  • Lennert, A. E. What occurs when the ice melts? Belugas, contaminants, ecosystems and human communities in the complexity of worldwide change. Mar. Pollut. Bull. 107, 7–14 (2016).

    Google Scholar 

  • Houde, M. et al. Spatial and temporal traits of other flame retardants and polybrominated diphenyl ethers in ringed seals (Phoca hispida) throughout the Canadian Arctic. Environ. Pollut. 223, 266–276 (2017).

    Google Scholar 

  • Primpke, S. et al. Critical evaluation of analytical strategies for the harmonized and cost-efficient evaluation of microplastics. Appl. Spectrosc. 74, 1012–1047 (2020).

    Google Scholar 

  • Shen, M. et al. Recent advances in toxicological analysis of nanoplastics in the atmosphere: A overview. Environ. Pollut. 252, 511–521 (2019).

    Google Scholar 

  • Materić, D. et al. Nanoplastics measurements in Northern and Southern polar ice. Environ. Res. 208, 112741 (2022).

    Google Scholar 

  • Allen, D. et al. Micro- and nanoplastics in the marine–ambiance atmosphere. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00292-x (2022).

  • Macdonald, R. W., Harner, T. & Fyfe, J. Recent local weather change in the Arctic and its influence on contaminant pathways and interpretation of temporal development knowledge. Sci. Total Environ. 342, 5–86 (2005).

    Google Scholar 

  • Next Post

    The role of agriculture in health

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Categories

    • Agriculture
    • Animals
    • Business
    • Economy
    • Education
    • Entertainment
    • Life Style
    • Nature
    • Sports
    • Travel
    • World

    Recommend

    NH Dems seek to limit ‘education freedom accounts’

    January 26, 2023

    Statement from Agriculture Deputy Secretary Jewel Bronaugh

    January 26, 2023

    Roseburg Public Library invites community members to streaming event with nature writer – KPIC News

    January 26, 2023

    Woman pulls 1K pound wagon with animals through SC

    January 26, 2023

    Israeli Raid Kills Several Palestinians on the West Bank

    January 26, 2023

    Hospice & Palliative Care of Iredell County Launches Caregiver Education Partnership

    January 26, 2023

    Archives

    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021

    Meta

    • Register
    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org

    Categories

    • Agriculture
    • Animals
    • Business
    • Economy
    • Education
    • Entertainment
    • Life Style
    • Nature
    • Sports
    • Travel
    • World
    • About
    • About us
    • Agriculture
    • Community
    • Contact US
    • Contact us
    • Home
    • Home 2
    • Home 3
    • Home 4
    • Home 5
    • Nature
    • Privacy policy
    • Privacy Policy
    • Sample Page
    • Terms and conditions

    © GreenHeartSoup - All Rights Are Reserved

    No Result
    View All Result
    • Home
    • World
    • Business
    • Sports
    • Agriculture
    • Nature
    • Animals
    • Economy
    • Education
    • Entertainment
    • Life Style
    • Travel

    © GreenHeartSoup - All Rights Are Reserved

    Welcome Back!

    Login to your account below

    Forgotten Password? Sign Up

    Create New Account!

    Fill the forms below to register

    All fields are required. Log In

    Retrieve your password

    Please enter your username or email address to reset your password.

    Log In
    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT