Celli, J. P. et al. Helicobacter pylori strikes via mucus by decreasing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 14321–14326 (2009).
Google Scholar
Suarez, S. S. & Pacey, A. A. Sperm transport within the feminine reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).
Google Scholar
Wells, M. L. & Goldberg, E. D. Occurrence of small colloids in sea water. Nature 353, 342–344 (1991).
Google Scholar
Verdugo, P. et al. The oceanic gel part: a bridge within the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004).
Google Scholar
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).
Google Scholar
Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).
Google Scholar
Childress, S. Mechanics of Swimming and Flying (Cambridge Univ. Press, 1981).
Berg, H. C. E. coli in Motion (Springer, 2004).
Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).
Google Scholar
Elfring, G. J. & Lauga, E. in Complex Fluids in Biological Systems (ed. Spagnolie, S.) 283–317 (Springer, 2015).
Patteson, A. E., Gopinath, A. & Arratia, P. E. Active colloids in complex fluids. Curr. Opin. Colloid Interf. Sci. 21, 86–96 (2016).
Google Scholar
Shoesmith, J. G. The measurement of bacterial motility. Microbiology 22, 528–535 (1960).
Schneider, W. R. & Doetsch, R. N. Effect of viscosity on bacterial motility. J. Bacteriol. 117, 696–701 (1974).
Google Scholar
Berg, H. C. & Turner, L. Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).
Google Scholar
Magariyama, Y. & Kudo, S. A mathematical clarification of a rise in bacterial swimming pace with viscosity in linear-polymer options. Biophys. J. 83, 733–739 (2002).
Google Scholar
Martinez, V. A. et al. Flagellated bacterial motility in polymer options. Proc. Natl Acad. Sci. USA 111, 17771–17776 (2014).
Google Scholar
Zhang, Y., Li, G. & Ardekani, A. M. Reduced viscosity for flagella transferring in an answer of lengthy polymer chains. Phys. Rev. Fluids 3, 023101 (2018).
Google Scholar
Patteson, A. E., Gopinath, A., Goulian, M. & Arratia, P. E. Running and tumbling with E. coli in polymeric options. Sci. Rep. 5, 15761 (2015).
Google Scholar
Qu, Z., Temel, F. Z., Henderikx, R. & Breuer, Ok. S. Changes within the flagellar bundling time account for variations in swimming habits of flagellated micro organism in viscous media. Proc. Natl Acad. Sci. USA 115, 1707–1712 (2018).
Google Scholar
Qu, Z. & Breuer, Ok. S. Effects of shear-thinning viscosity and viscoelastic stresses on flagellated micro organism motility. Phys. Rev. Fluids 5, 073103 (2020).
Google Scholar
Zöttl, A. & Yeomans, J. M. Enhanced bacterial swimming speeds in macromolecular polymer options. Nat. Phys. 15, 554–558 (2019).
Google Scholar
Binagia, J. P., Phoa, A., Housiadas, Ok. D. & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. J. Fluid Mech. 900, A4 (2020).
Google Scholar
Man, Y. & Lauga, E. Phase-separation fashions for swimming enhancement in complex fluids. Phys. Rev. E 92, 023004 (2015).
Google Scholar
Hyon, Y., Marcos, Powers, T. R., Stocker, R. & Fu, H. C. The wiggling trajectories of micro organism. J. Fluid Mech. 705, 58–76 (2012).
Google Scholar
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competitors: surviving and thriving within the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
Google Scholar
Nelson, B. J., Kaliakatsos, I. Ok. & Abbott, J. J. Microrobots for minimally invasive medication. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).
Google Scholar
Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
Google Scholar
Peng, Y., Liu, Z. & Cheng, X. Imaging the emergence of bacterial turbulence: part diagram and transition kinetics. Sci. Adv. 7, eabd1240 (2021).
Google Scholar
Liu, Z., Zeng, W., Ma, X. & Cheng, X. Density fluctuations and power spectra of 3D bacterial suspensions. Soft Matter 17, 10806–10817 (2021).
Google Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles: movement of micro organism close to strong boundaries. Biophys. J. 90, 400–412 (2006).
Google Scholar
Hiemenz, P. C. & Lodge, T. Polymer Chemistry 2nd edn (CRC Press, 2007).
Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).
Google Scholar
Macosko, C. W. Rheology: Principles, Measurements, and Applications (VCH, 1994).
Jeffrey, D. J. & Onishi, Y. Calculation of the resistance and mobility features for 2 unequal inflexible spheres in low-Reynolds-number circulate. J. Fluid Mech. 139, 261–290 (1984).
Google Scholar
Zhang, B. Ok., Leishangthem, P. Ok., Ding, Y. & Xu, X. L. An efficient and environment friendly mannequin of the near-field hydrodynamic interactions for lively suspensions of micro organism. Proc. Natl Acad. Sci. USA 118, e2100145118 (2021).
Google Scholar
Li, G., Tam, L.-Ok. & Tang, J. X. Amplified impact of Brownian movement in bacterial near-surface swimming. Proc. Natl Acad. Sci. USA 105, 18355–18359 (2008).
Google Scholar
Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–518 (1989).
Google Scholar
Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional monitoring. Nature 239, 500–504 (1972).
Google Scholar
Crenshaw, H. C. A brand new have a look at locomotion in microorganisms: rotating and translating. Am. Zool. 36, 608–618 (1996).
Google Scholar
Rossi, M., Cicconofri, G., Beran, A., Noselli, G. & DeSimone, A. Kinematics of flagellar swimming in Euglena gracilis: helical trajectories and flagellar shapes. Proc. Natl Acad. Sci. USA 114, 13085–13090 (2017).
Google Scholar
Cortese, D. & Wan, Ok. Y. Control of helical navigation by three-dimensional flagellar beating. Phys. Rev. Lett. 126, 088003 (2021).
Google Scholar
Shimogonya, Y. et al. Torque-induced precession of bacterial flagella. Sci. Rep. 5, 18488 (2015).
Google Scholar
Poon, W. C. Ok., Weeks, E. R. & Royall, C. P. On measuring colloidal quantity fractions. Soft Matter 8, 21–30 (2012).
Google Scholar
Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal research. J. Colloid Interf. Sci. 179, 298–310 (1996).
Google Scholar